

MIDDLESEX COUNTY, NEW JERSEY (ALL JURISDICTIONS)

Middlesex County

COMMUNITY NAME

CARTERET, BOROUGH OF CRANBURY, TOWNSHIP OF DUNELLEN, BOROUGH OF EAST BRUNSWICK, TOWNSHIP OF EDISON, TOWNSHIP OF HELMETTA, BOROUGH OF HIGHLAND PARK, BOROUGH OF JAMESBURG, BOROUGH OF MIDLESEX, BOROUGH OF MILLTOWN, BOROUGH OF MONROE, TOWNSHIP OF NEW BRUNSWICK, CITY OF

COMMUNITY NUMBER

COMMUNITY NAME NORTH BRUNSWICK, TOWNSHIP OF OLD BRIDGE, TOWNSHIP OF PERTH AMBOY, CITY OF PISCATAWAY, TOWNSHIP OF PLAINSBORO, TOWNSHIP OF SAYREVILLE, BOROUGH OF SOUTH AMBOY, CITY OF SOUTH BRUNSWICK, TOWNSHIP OF SOUTH BRUNSWICK, TOWNSHIP OF SOUTH PLAINFIELD, BOROUGH OF SOUTH RIVER, BOROUGH OF	COMMUNITY NUMBER 340271 340265 340272 340274 340275 340276 340277 340277 340278 340279 340280 340280
SPOTSWOOD, BOROUGH OF WOODBRIDGE, TOWNSHIP OF	340282 345331

EFFECTIVE: JULY 6, 2010

Federal Emergency Management Agency

COMMUNITY NUMBER - 34023CV001A

NOTICE TO FLOOD INSURANCE STUDY USERS

Communities participating in the National Flood Insurance Program have established repositories of flood hazard data for floodplain management and flood insurance purposes. This Flood Insurance Study (FIS) may not contain all data available within the repository. It is advisable to contact the community repository for any additional data.

Part or all of this FIS may be revised and republished at any time. In addition, part of this FIS may be revised by the Letter of Map Revision process, which does not involve republication or redistribution of the FIS. It is, therefore, the responsibility of the user to consult with community officials and to check the community repository to obtain the most current FIS components.

Initial Countywide FIS Effective Date: July 6, 2010

Revised Countywide FIS Date:

TABLE OF CONTENTS – Volume 1

1.0	INTE	RODUCTION	1
	1.1	Purpose of Study	1
	1.2	Authority and Acknowledgments	1
	1.3	Coordination	9
2.0	<u>ARE</u>	A STUDIED	10
	2.1	Scope of Study	10
	2.2	Community Description	18
	2.3	Principal Flood Problems	19
	2.4	Flood Protection Measures	23
3.0	<u>ENG</u>	INEERING METHODS	26
	3.1	Hydrologic Analyses	26
	3.2	Hydraulic Analyses	49
	3.3	Coastal Analysis	62
	3.4	Vertical Datum	75
4.0	<u>FLO</u>	ODPLAIN MANAGEMENT APPLICATIONS	76
	4.1	Floodplain Boundaries	76
	4.2	Floodways	77
5.0	<u>INSU</u>	JRANCE APPLICATIONS	153
6.0	<u>FLO</u>	OD INSURANCE RATE MAP	155
7.0	<u>OTH</u>	IER STUDIES	155
8.0	LOC	ATION OF DATA	155
9.0	BIBI	LIOGRAPHY AND REFERENCES	159

$\underline{TABLE \ OF \ CONTENTS} - Volume \ 1 \ \text{- continued}$

<u>Page</u>

FIGURES

Figure 1 - Transect Location Map	70
Figure 2 - Transect Schematic	74
Figure 3 - Floodway Schematic	153

TABLES

Table 1 - Initial and Final CCO Meetings	9
Table 2 - Flooding Sources Studied by Detailed Methods	10-11
Table 3 - Stream Name Changes	11-12
Table 4 – Model Dates for Riverine Flooding Sources	12-16
Table 5 - Scope of Revision	16
Table 6 - Letters of Map Correction	17-18
Table 7 - Summary of Discharges	33-49
Table 8 - Manning's "n" Values	59-61
Table 9 - Parameter Values for Surge Elevations	65
Table 10 - Transect Descriptions	69, 71-73
Table 11 - Summary of Stillwater Elevations	74-75
Table 12 - Floodway Data	79-152
Table 13 - Community Map History	156-158

TABLE OF CONTENTS - Volume 1 - continued

EXHIBITS

Exhibit 1 - Flood Profiles	
Ambrose Brook	Panels 01P–15P
Barclay Brook	Panels 16P–19P
Barclay's Brook	Panel 20P–22P
Beaverdam Brook	Panel 23P–25P
Bee Brook	Panel 26P
Bentley's Brook	Panel 27P
Bog Brook	Panel 28P
Bonhamtown Brook	Panel 29P
Bonygutt Brook	Panels 30P–32P
Bound Brook	Panels 33P–40P
Boundary Branch Mill Brook No. 1	Panels 41P–42P
Carters Brook	Panels 43P–48P
Cedar Brook No. 1	Panels 49P–53P
Cedar Brook No. 2	Panels 54P–55P
Cedar Brook No. 3	Panels 56P–57P

TABLE OF CONTENTS – Volume 2

EXHIBITS - continued

Exhibit 1 - Flood Profiles - continued	
Clear Brook	Panels 58P–59P
Coppermine Brook	Panel 60P
Cow Yard Brook	Panel 61P
Cranbury Brook	Panels 62P–71P
Crossway Creek	Panels 72P–73P
Deep Run	Panels 74P-81P
Devils Brook	Panels 82P-85P
Dismal Brook	Panels 86P–87P
Diversion Channel	Panel 88P
Doty's Brook	Panels 89P–93P
Great Ditch	Panel 94P
Green Brook	Panels 95P–97P
Heards Brook	Panels 98P–100P
Heathcote Brook	Panels 101P–106P
Heathcote Brook Branch	Panel 107P
Ireland Brook	Panels 108P–111P
Iresick Brook	Panels 112P–114P
Lawrence Brook	Panels 115P–121P
Mae Brook	Panels 122P–124P
Manalapan Brook	Panels 125P–130P
Matawan Creek	Panel 131P
Matchaponix Brook	Panels 132P–135P

TABLE OF CONTENTS - Volume 2 - continued

EXHIBITS - continued

Exhibit 1 - Flood Profiles - continued Mile Run Mill Brook No. 1 Mill Brook No. 2 Millstone River Oakeys Brook

Panels	136P-139P
Panels	140P-141P
Panel	142P
Panels	143P-151P
Panels	152P-156P

TABLE OF CONTENTS – Volume 3

EXHIBITS - continued

Exhibit 1 - Flood Profiles - continued	
Parkway Branch	Panels 157P–158P
Pumpkin Patch Brook	Panels 159P–160P
Rahway River	Panels 161P–163P
Raritan River	Panels 164P–171P
Robinsons Branch	Panels 172P–173P
Robinsons Branch Tributary	Panel 174P
Sawmill Brook No. 1	Panels 175P–179P
Sawmill Brook No. 2	Panel 180P
Shallow Brook	Panels 181P–184P
Six Mile Run	Panels 185P–186P
Six Mile Run Branch	Panels 187P–188P
South Branch Rahway River	Panels 189P–192P
South River	Panels 193P–196P
Spa Spring Creek	Panels 197P–198P
Stream 14-14-2-2	Panels 199P–202P
Stream 14-14-2-3	Panels 203P–205P
Sucker Brook	Panels 206P–207P
Switzgable Brook	Panel 208P
Ten Mile Run	Panels 209P–210P
Tennents Brook	Panels 211P–214P
Tributary A to Lawrence Brook	Panel 215P
Tributary No. 1 to Sucker Brook	Panel 216P
Tributary No. 1 to Ten Mile Run	Panels 217P–218P
Tributary No. 2 to Ten Mile Run	Panel 219P
Tributary to Carters Brook	Panel 220P
Tributary to Cedar Brook No. 3	Panel 221P
Tributary to Cranbury Brook	Panel 222P
Tributary to Heathcote Brook	Panels 223P–224P
Tributary to Lawrence Brook	Panel 225P
Tributary to Manalapan Brook	Panel 226P
Tributary to Mile Run	Panel 227P
Tributary to Millstone River	Panel 228P

TABLE OF CONTENTS - Volume 3 - continued

EXHIBITS - continued

Exhibit 1 - Flood Profiles - continued	
Tributary to Oakeys Brook	Panel 229P
Tributary to Sawmill Brook No. 2	Panel 230P
Tributary to Six Mile Run Branch	Panels 231P–232P
West Branch Mill Brook No. 1	Panels 233P–234P
Wigwam Brook	Panels 235P–237
Woodbridge River	Panels 238P–242P

Exhibit 2 - Flood Insurance Rate Map Index Flood Insurance Rate Map

FLOOD INSURANCE STUDY MIDDLESEX COUNTY, NEW JERSEY (ALL JURISDICTIONS)

1.0 <u>INTRODUCTION</u>

1.1 Purpose of Study

This countywide Flood Insurance Study (FIS) investigates the existence and severity of flood hazards in, or revises and updates previous FISs/Flood Insurance Rate Maps (FIRMs) for the geographic area of Middlesex County, including the Boroughs of Carteret, Dunellen, Helmetta, Highland Park, Jamesburg, Metuchen, Middlesex, Milltown, Sayreville, South Plainfield, South River, and Spotswood; the Cities of New Brunswick, Perth Amboy, and South Amboy; and the Townships of Cranbury, East Brunswick, Edison, Monroe, North Brunswick, Old Bridge, Piscataway, Plainsboro, South Brunswick, and Woodbridge; referred to collectively as Middlesex County.

This FIS aids in the administration of the National Flood Insurance Act of 1968 and the Flood Disaster Protection Act of 1973. This FIS has developed flood risk data for various areas of the county that will be used to establish actuarial flood insurance rates. This information will also be used by Middlesex County to update existing floodplain regulations as part of the Regular Phase of the National Flood Insurance Program (NFIP), and will also be used by local and regional planners to further promote sound land use and floodplain development. Minimum floodplain management requirements for participation in the NFIP are set forth in the Code of Federal Regulations at 44 CFR, 60.3.

In some States or communities, floodplain management criteria or regulations may exist that are more restrictive or comprehensive than the minimum Federal requirements. In such cases, the more restrictive criteria take precedence and the State (or other jurisdictional agency) will be able to explain them.

1.2 Authority and Acknowledgments

The sources of authority for this FIS are the National Flood Insurance Act of 1968 and the Flood Disaster Protection Act of 1973.

This FIS was prepared to include all jurisdictions within Middlesex County in a countywide format. Information on the authority and acknowledgments for each jurisdiction included in this countywide FIS, as compiled from their previously printed FIS reports, is shown below.

Carteret, Borough of: the hydrologic and hydraulic analyses from the original FIS report, dated November 1976 were prepared by the U.S. Army Corps of Engineers (USACE) for the Federal Emergency Management Agency (FEMA), under InterAgency Agreement No. IAA-H-16-75, Project Order No. 16. In the revision for the FIS dated April 15, 1992, the hydrologic analyses for Arthur Kill and the Rahway River were prepared by Camp, Dresser, and McKee, Inc., while preparing the FIS for the contiguous City of New York, New York. That work was completed in December 1981. the hydrologic and hydraulic analyses from the

Cranbury, Township of: the hydrologic and hydraulic analyses from the original FIS report, dated September 1979 were prepared by the New Jersey Department of Environmental Protection (NJDEP) for FEMA, under Contract No. H-3959. For the FIS dated November 17, 1981, the hydrologic and hydraulic analyses for that study were conducted by Justin and Courtney, Inc., under subcontract to the NJDEP.

Dunellen, Borough of: the hydrologic and hydraulic analyses from the FIS report dated February 4, 1988, were prepared by the Natural Resources Conservation Service (NRCS) of Somerset, New Jersey, for FEMA, under Contract No. IAA-H-23-74, Project Order No. 10. The updated hydrologic and hydraulic analyses for Green Brook were prepared by the NJDEP, Division of Water Resources, Bureau of Floodplain Management. This work was completed in July 1986.

East Brunswick, Township of: the hydrologic and hydraulic analyses from the original FIS report, dated July 6, 1981, and January 6, 1982, Flood Insurance Rate Map (FIRM) (hereinafter referred to as the 1982 FIS), were prepared by the NJDEP, Division of Water Resources, Bureau of Floodplain Management, for FEMA, under Contract No. H-3855. Mapping was supplied by the Township of East Brunswick and by the updated State of New Jersey Flood Hazard Report Nos. 2, 7, and 8. That work was completed in October 1977. The hydrologic and hydraulic analyses for the 1982 FIS were performed by Anderson-Nichols and Company, Inc., under subcontract to the NJDEP. Survey and topographic data were supplied by GEOD Aerial Mapping, Inc., under subcontract with Anderson-Nichols and Company, Inc. Tidal flood data were determined by Tetra Tech, Inc.

For the May 3, 1990, FIS report, the hydraulic analyses for Cedar Brook No. 3 were prepared by Lynch, Carmody, Guiliano & Karol, P.A.

For the September 18, 1986, FIS report, the updated tidal analysis for Raritan Bay was performed by Camp, Dresser and McKee for FEMA during the preparation of the FIS for the City of New York. That work was completed in December 1981.

Edison, Township of: the hydrologic and hydraulic analyses represents a revision from the original FIS report, dated December 1982 by the USACE for FEMA. For the FIS report, dated December 19, 1984, the hydrologic and hydraulic analyses for the Raritan River were performed by the NJDEP.

> The original tidal analysis for the Raritan River was performed by the NJDEP. The updated version was prepared by RBA Group for FEMA, under Contract No. EMW-C-0674.

Helmetta, Borough of: the hydrologic and hydraulic analyses from the April 16, 1984, FIS report, were prepared by the NJDEP for FEMA, under Contract No. H-3959. That work was completed in October 1981. The hydrologic and hydraulic analyses for that study were conducted by Justin & Courtney, Inc., under subcontract to the NJDEP.

Highland Park, Borough of: the hydrologic and hydraulic analyses, for the FIS dated December 1976, were performed by the USACE, New York District, for the Federal Insurance Administration (FIA), under Inter-Agency Agreement No. IAA-H-2-73, Project Order No. 4. This work, which was completed in June 1973, covered all flooding sources affecting the Borough of Highland Park.

Jamesburg, Borough of: the hydrologic and hydraulic analyses from the November 1983 FIS report, were prepared by the NJDEP for FEMA, under Contract No. H-3959. The study was performed by Justin & Courtney, Inc., under subcontract to the NJDEP. That work was completed in October 1981.

Metuchen, Borough of:	the hydrologic and hydraulic analyses from the June 1979 FIS report, were prepared by the New Jersey Division of Water Resources for the FIA, under Contract No. H-3855. That work was completed in October 1977. The study was performed by McPhee, Smith, Rosenstein Engineers, under subcontract to the New Jersey Division of Water Resources.
Middlesex, Borough of:	the hydrologic and hydraulic analyses from the March 18, 1986, FIS report, represent a revision of the original analyses by the USACE. The updated version was prepared by The RBA Group for FEMA, under Contract No. EMW-C-1195. That work was completed in October 1984.
Milltown, Borough of:	the hydrologic and hydraulic analyses from the August 4, 1980, FIS report, were performed by the NJDEP, Division of Water Resources, Bureau of Floodplain Management for the FIA under Contract No. H-3855. That work was completed in August 1977. The study was prepared by Anderson-Nichols and Company, Inc., for the NJDEP, Division of Water Resources, Bureau of Floodplain Management. GEOD Aerial Mapping, Inc., supplied the survey and topographic data to Anderson-Nichols.
Monroe, Township of:	the hydrologic and hydraulic analyses from the original October 1981 FIS report, were performed by Justin & Courtney, Inc., under subcontract to the NJDEP. That work was completed in October 1981. The second revision was prepared by Dewberry & Davis under agreement with FEMA. Flood boundaries on Clear Brook and the Possum Hollow Road Drainage Channel were revised based on updated topographic maps submitted by the community. That work was completed in July 1986. In the

third revision, from the November 6, 1991, FIS report, analyses were performed by Carr Engineering Associates, P.A., to reflect the effects of a channelization project on Clear Brook and an unnamed tributary to Clear Brook. This work was completed in June 1990. That work was prepared by the NJDEP for FEMA,

under Contract No. H-3959.

New Brunswick, City of:	the hydrologic and hydraulic analyses from the June 1979 FIS report, were prepared by the NJDEP, Division of Water Resources, Bureau of Floodplain Management for the FIA, under Contract No. H-3855. This work was completed in October 1977. Survey and topographic data were supplied by GEOD Aerial Mapping, Inc., under subcontract with Anderson-Nichols and Company, Inc., under subcontract to the NJDEP, Division of Water Resources, Bureau of Floodplain Management. Tidal flood data were determined by Tetra Tech, Inc., which has conducted an extensive tidal study of the eastern seaboard of the United States. Approval to use this data for insurance applications was obtained from the FIA.
North Brunswick, Township of:	the hydrologic and hydraulic analyses from the November 1979 FIS report, were prepared by the NJDEP, Division of Water Resources, Bureau of Floodplain Management for the FIA, under Contract No. H-3855. This work was completed in December 1977. The report was prepared by Anderson Nichols and Company, Inc., Boston, Massachusetts, for the NJDEP, Division of Water Resources, Bureau of Floodplain Management. Survey, topographic data, and topographic mapping were supplied by GEOD Aerial Mapping, Inc., Oak Ridge, New Jersey, under subcontract to Anderson Nichols and Company. The mapping for Lawrence Brook, however, was an update of mapping in Flood Hazard Report No. 7.
Old Bridge, Township of:	the hydrologic and hydraulic analyses from the original August 1982 FIS report, were prepared by URS Company, Inc., for FEMA, under

Contract No. H-6808. The original study was completed in August 1982. The hydrologic and hydraulic analyses in that study for the South River and Matchaponix Brook were obtained from the FISs for the Townships of Monroe and East Brunswick, and the Borough of Spotswood. The addition of the wave height analysis was prepared by Dewberry and Davis for FEMA, under Contract No. EMW-C-0543; this was completed in July 1983. The updated study,

5

from the October 16, 1987, FIS report were prepared by Dewberry and Davis. The Township of Old Bridge Department of Engineering and Planning and the NJDEP provided technical data. This work was completed in September 1986.

Perth Amboy, City of: the hydrologic and hydraulic analyses of the revision of the original study from the November 1, 1983, FIS report, prepared by Tetra Tech, Inc., for FEMA, under Contract No. H-3830. The updated version was prepared by Tetra Tech, Inc., under agreement with FEMA. This work was completed in August 1981.

Piscataway, Township of: the hydrologic and hydraulic analyses from the July 18, 1983, FIS report, were prepared by the USACE, New York District, for FEMA, under Inter-Agency Agreement No. IAA-H-7-76, Project Order No. 11. The hydrologic and hydraulic analyses for Bonygutt Brook, Bound Brook, Ambrose Brook, and Doty's Brook were conducted by T & M Associates under subcontract to the USACE. This work was completed in January 1982.

Plainsboro, Township of:the hydrologic and hydraulic analyses from the
December 19, 1984, FIS report, were prepared by
the NJDEP for FEMA, under Contract No.
H-3959. The hydrologic and hydraulic analyses
for that study were conducted by Justin &
Courtney, Inc., under subcontract to the NJDEP.
This work was completed in November 1981.

Sayreville, Borough of: the hydrologic and hydraulic analyses from the original June 1977 FIS report, were performed by the NJDEP for FEMA, under Contract No. H-3855. The original work was completed in June 1977. The updated stillwater analysis was performed by Camp, Dresser and McKee for FEMA during the preparation of the FIS for the City of New York. The New York study was completed in December 1981. The addition of the wave height analysis was performed by Dewberry & Davis and completed in July 1985.

South Amboy, City of: the hydrologic and hydraulic analyses of the revision from the August 1981 FIS report, were performed by Tetra Tech, Inc., for FEMA. The

	Tetra Tech work was completed in August 1981. The updated analysis for the Raritan River was prepared by Camp, Dresser and McKee for FEMA during the preparation of the FIS for the City of New York. The New York study was completed in December 1981. The updated version was prepared by Dewberry & Davis, under agreement with FEMA. That work was completed in June 1985.
South Brunswick, Township of:	the hydrologic and hydraulic analyses from the December 18, 1985, FIS report, were prepared by the NJDEP for FEMA, under Contract No. H-3959. The hydrologic and hydraulic analyses were performed by O'Brien & Gere Engineers, Inc., under subcontract to the NJDEP. This work was completed in March 1984.
South Plainfield, Borough of:	the hydrologic and hydraulic analyses from the February 1980 FIS report, were performed by the NJDEP, for the FIA, under Contract No. H-3855. This work was completed in June 1977.
South River, Borough of:	the original hydrologic and hydraulic analyses from the May 1977 FIS report, were performed by the NJDEP for FEMA, under Contract No. H-3855. The original work was completed in May 1977. The updated tidal analysis for the South River was performed by Camp, Dresser and McKee for FEMA during the preparation of the FIS for the City of New York. The New York study was completed in December 1981.
Spotswood, Borough of:	the original hydrologic and hydraulic analyses from the August 1977 FIS report, were prepared by the NJDEP, Division of Water Resources, Bureau of Floodplain Management, for FEMA, under Contract No. H-3855. The work for the original study was completed in August 1977. The hydrologic and hydraulic analyses for Cedar Brook in this revision were prepared by Lynch, Carmody, Guiliano, & Karol, P.A., under agreement with FEMA. The work for this revision was completed in December 1988.
Woodbridge, Township of:	the original hydrologic and hydraulic analyses from the January 1979 FIS report, were revised by Anderson Nichols, Inc., for FEMA. The

updated version was prepared by the NJDEP, Division of Water Resources, Bureau of Floodplain Management, under agreement with FEMA, Contract No. H-3959. This study was completed in January 1979. The hydrologic and hydraulic analyses in the updated study were computed by Richard Browne Associates under subcontract to the NJDEP, Division of Water Resources, Bureau of Floodplain Management. The wave height analysis for this study was prepared by Dewberry and Davis for FEMA, under Contract No. H-EMW-C-0543. That work was completed in July 1981.

For this countywide FIS, revised hydrologic and hydraulic analyses for Boundary Branch Mill Brook No. 1, Coppermine Brook, Mill Brook No. 1, South Branch Rahway River, and West Branch Mill Brook No. 1, were prepared for FEMA by Leonard Jackson Associates. Also, floodplains for all detailed study, unrevised streams have been redelineated using updated topographic data provided to FEMA by Middlesex County. Revised hydraulic analyses for the Raritan River were prepared by Dewberry under Contract No. EMW-2000-CO-0003. This work was completed in November 2002. Additionally, flood hazards previously assessed using approximate methods were re-analyzed throughout the county and results were then mapped using the Middlesex County topographic data. This work was completed in July 2008. Finally, the hydrology and hydraulic analyses for Matawan Creek were taken from the Monmouth County (All Jurisdictions) FIS dated September 25, 2009 (FEMA, 2009).

Floodplains for all of the detailed study, including unrevised streams, have been redelineated using updated topographic data provided to FEMA as part of this revision. This work was performed for FEMA by Dewberry & Davis LLC. The topographic data was generated by the LiDAR (Light Detection and Ranging) project performed under Subcontractor Contract No: S/C-EMN-2002-RP-0018-001. The LiDAR data were collected in the spring of 2006 and processed by Terrapoint USA, a subcontractor to Dewberry & Davis LLC. The data was processed to an accuracy of the equivalent of 2-foot contours. New analyses were also undertaken for the majority of approximate study floodplains throughout the county.

Base map information shown on this FIRM was provided in digital format by the State of New Jersey Office of Information Technology. This information was derived from digital orthophotos produced at a scale of 1:2,400 with 1-foot pixel resolution from photography dated April 2002.

The projection used for the production of this FIRM is New Jersey State Plane, FIPSZONE 2900. The horizontal datum was NAD 83, GRS80 spheroid. Differences in datum, spheroid, projection, or State Plane zones used in the production of FIRMs for adjacent counties may result in slight positional differences in map features at the county boundaries. These differences do not affect the accuracy of information shown on the FIRM.

Coordination 1.3

> Consultation Coordination Officer's (CCO) meetings may be held for each jurisdiction in this countywide FIS. An initial CCO meeting is held typically with representatives of FEMA, the community, and the study contractor to explain the nature and purpose of a FIS, and to identify the streams to be studied by detailed methods. A final CCO meeting is held typically with representatives of FEMA, the community, and the study contractor to review the results of the study.

> The dates of the initial and final CCO meetings held for jurisdictions within Middlesex County are shown in Table 1, "Initial and Final CCO Meetings."

TABLE 1 - INITIAL AND FINAL CCO MEETINGS

Community

Initial CCO Date

March 15, 1976

May 12, 1975

June 10, 1981

March 15, 1976

March 15, 1976

March 15, 1976 May 12, 1975

May 5, 1975

April 6, 1983

*

Final CCO Date

Borough of Carteret Township of Cranbury
Borough of Dunellen
Township of East Brunswick
Township of Edison
Borough of Helmetta
Borough of Highland Park
Borough of Jamesburg
Borough of Metuchen
Borough of Middlesex
Borough of Milltown
Township of Monroe
City of New Brunswick
Township of North Brunswick
Township of Old Bridge
City of Perth Amboy
Township of Piscataway
Township of Plainsboro
Borough of Sayreville
City of South Amboy
Township of South Brunswick
Borough of South Plainfield
Borough of South River
Borough of Spotswood
Township of Woodbridge
r

May 12, 1975 June 1980 September 1975 June 23, 1975 March 15, 1976 September 1975 March 1976 May 5, 1975 May 12, 1975

November 10, 1976

April 29, 1976 July 9, 1981 June 6, 1975 January 21, 1981 February 23, 1984 November 7, 1983 June 28, 1983 September 25, 1978 April 9, 1985 April 4, 1979 March 16, 1984 June 26, 1978 May 8, 1979 August 6, 1984 June 10, 1983 August 10, 1982 May 25, 1983 July 18, 1979 June 23, 1982 December 5, 1984 August 21, 1978 August 28, 1978 November 21, 1978

December 16, 1981

*Data not available

*

For this countywide FIS, intial CCO meetings were held December 6 and 8, 2005. These meetings were attended by representatives of the Cities of New Brunswick, Perth Amboy, and South Amboy; the Boroughs of Carteret, Helmetta, Highland Park, Jamesburg, Metuchen, Middlesex, Milltown, Sayreville, South Plainfield, South River, and Spotswood; the Townships of Cranbury, East Brunswick, Edison, Monroe, Old Bridge, Piscataway, Plainsboro, and Woodbridge; the New Jersey Department of Environmental Protection (NJDEP), FEMA, and Michael Baker, Jr., Inc.

Final CCO meetings for this countywide study were held February 5 and 6, 2009. These meetings were attended by representatives of the Cities of New Brunswick, Perth Amboy, and South Amboy; the Boroughs of Carteret, Jamesburg, Metuchen, Middlesex, Milltown, and Spotswood; and the Townships of East Brunswick, Edison, Old Bridge, Piscataway, Plainsboro, South Brunswick, and Woodbridge; the NJDEP, FEMA, Dewberry, and Leonard Jackson Associates.

2.0 <u>AREA STUDIED</u>

2.1 Scope of Study

This FIS covers the incorporated areas of the geographic area of Middlesex County, New Jersey.

All or portions of the flooding sources listed in Table 2, "Flooding Sources Studied by Detailed Methods," were studied by detailed methods. Limits of detailed study are indicated on the Flood Profiles (Exhibit 1) and on the FIRM (Exhibit 2). The areas studied were selected with priority given to all known flood hazard areas and areas of projected development and proposed construction.

TABLE 2 - FLOODING SOURCES STUDIED BY DETAILED METHODS

Ambrose Brook Arthur Kill Barclay Brook Barclay's Brook Beaverdam Brook Bee Brook Bentley's Brook Bog Brook Bonhamtown Brook Bonhamtown Brook Bound Brook Bound Brook Boundary Branch Mill Brook No. 1 Carters Brook Cedar Brook No. 1 Cedar Brook No. 2 Cedar Brook No. 3 Cheesequake Creek Clear Brook Coppermine Brook Cow Yard Brook Cranbury Brook Crossway Creek Deep Run Devils Brook Dismal Brook Diversion Channel Doty's Brook Great Ditch

TABLE 2 - FLOODING SOURCES STUDIED BY DETAILED METHODS - continued

Green Brook Heards Brook Heathcote Brook Heathcote Brook Branch Ireland Brook Iresick Brook Lawrence Brook Mae Brook Manalapan Brook Matawan Creek Matchaponix Brook Mellins Creek Mile Run Mill Brook No. 1 Mill Brook No. 2 Millstone River **Oakeys Brook** Parkway Branch Pumpkin Patch Brook Rahway River Raritan Bay Raritan River **Robinsons Branch Robinsons Branch Tributary** Sawmill Brook No. 1 Sawmill Brook No. 2 Shallow Brook Six Mile Run

Six Mile Run Branch South Branch Rahway River South River Spa Spring Creek Stream 14-14-2-2 Stream 14-14-2-3 Sucker Brook Switzgable Brook Ten Mile Run **Tennents Brook** Tributary A to Lawrence Brook Tributary No. 1 to Sucker Brook Tributary No. 1 to Ten Mile Run Tributary No. 2 to Ten Mile Run Tributary to Carters Brook Tributary to Cedar Brook No. 3 Tributary to Cranbury Brook Tributary to Heathcote Brook Tributary to Lawrence Brook Tributary to Manalapan Brook Tributary to Mile Run Tributary to Millstone River Tributary to Oakeys Brook Tributary to Sawmill Brook No. 2 Tributary to Six Mile Run Branch West Branch Mill Brook No. 1 Wigwam Brook Woodbridge River

Table 3, "Stream Name Changes," lists streams that have names in this countywide FIS other than those used in previously printed FISs for the communities in which they are located.

TABLE 3 - STREAM NAME CHANGES

Community

Borough of Highland Park Township of Cranbury Township of East Brunswick Township of Monroe Township of Plainsboro Borough of South Plainfield Borough of Spotswood Borough of Highland Park

Old Name

Boundary Branch of Mill Brook Cedar Brook Cedar Brook Cedar Brook Cedar Brook Cedar Brook Cedar Brook Mill Brook

New Name

Boundary Branch Mill Brook No. 1 Cedar Brook No. 1 Cedar Brook No. 3 Cedar Brook No. 1 Cedar Brook No. 1 Cedar Brook No. 2 Cedar Brook No. 3 Mill Brook No. 1

TABLE 3 - STREAM NAME CHANGES - continued

<u>Community</u>	Old Name	New Name
Township of Edison Township of East Brunswick Borough of Milltown Borough of Helmetta Township of Monroe Borough of Spotswood Borough of Metuchen Borough of Helmetta Borough of Highland Park	Mill Brook Sawmill Brook Sawmill Brook Sawmill Brook Sawmill Brook Tributary to Cedar Brook Tributary to Mill Brook Tributary to Sawmill Brook West Branch of Mill Brook	Mill Brook No. 2 Sawmill Brook No. 1 Sawmill Brook No. 1 Sawmill Brook No. 2 Sawmill Brook No. 2 Tributary to Cedar Brook No. 3 Bonhamtown Brook Tributary to Sawmill Brook No. 2 West Branch Mill Brook No. 1
Riverine flooding sources throughout the county have been studied by detailed		

Riverine flooding sources throughout the county have been studied by detailed methods at different times and, prior to this countywide FIS, often on a community-by-community basis. Table 4, "Model Dates for Riverine Flooding Sources" below represents the hydraulic modeling dates for the detailed study flooding sources in the county.

TABLE 4 – MODEL DATES FOR RIVERINE FLOODING SOURCES

		MOST RECENT
STREAM NAME	<u>COMMUNITY</u>	MODEL DATE
Ambrose Brook	Borough of Middlesex	October 1984
Ambrose Brook	Township of Piscataway	January 1982
Barclay Brook	Township of Old Bridge	August 1982
Barclay's Brook	Borough of Jamesburg	October 1981
Barclay's Brook	Township of Monroe	October 1981
Beaverdam Brook	Township of East Brunswick	October 1977
Bee Brook	Township of Plainsboro	November 1981
Bentley's Brook	Township of Monroe	October 1981
Bog Brook	Borough of Milltown, Township of East	October 1977
	Brunswick	
Bonhamtown Brook	Borough of Metuchen	October 1977
Bonhamtown Brook	Township of Edison	December 1982
Bonygutt Brook	Borough of Dunellen	July 1986
Bonygutt Brook	Borough of Middlesex	October 1984
Bonygutt Brook	Township of Piscataway	January 1982
Bound Brook	Borough of Middlesex	October 1984
Bound Brook	Borough of South Plainfield	June 1977
Bound Brook	Township of Edison	December 1982
Bound Brook	Township of Piscataway	January 1982

TABLE 4 - MODEL DATES FOR RIVERINE FLOODING SOURCES - continued

STREAM NAME

<u>COMMUNITY</u>

MOST RECENT MODEL DATE

Boundary Branch of Mill Brook Carters Brook Cedar Brook No. 1 Cedar Brook No. 1 Cedar Brook No. 1 Cedar Brook No. 2 Cedar Brook No. 3 Cedar Brook No. 3 **Cheesequake** Creek Clear Brook **Coppermine Brook** Cow Yard Brook **Cranbury Brook Cranbury Brook Cranbury Brook** Crossway Creek Deep Run **Devils Brook Devils Brook Dismal Brook Dismal Brook Diversion Channel** Doty's Brook Great Ditch Green Brook Green Brook Heards Brook Heathcote Brook Heathcote Brook Branch Ireland Brook Ireland Brook Iresick Brook Lawrence Brook

Lawrence Brook Lawrence Brook Borough of Highland Park Township of South Brunswick Township of Cranbury Township of Monroe Township of Plainsboro Borough of South Plainfield Borough of Spotswood Township of East Brunswick Borough of Sayreville Township of Monroe Township of Edison Township of South Brunswick Township of Cranbury Township of Monroe Township of Plainsboro Borough of Sayreville Township of Old Bridge Township of Plainsboro Township of South Brunswick Borough of Metuchen Township of Edison Township of North Brunswick Township of Piscataway Township of South Brunswick Borough of Middlesex Borough of Dunellen Township of Woodbridge Township of South Brunswick Township of South Brunswick

Township of East Brunswick Township of South Brunswick Township of Old Bridge Borough of Milltown, City of New Brunswick, Township of East Brunswick Township of North Brunswick Township of South Brunswick

August 2008 March 1984 September 1979 October 1981 November 1981 June 1977 December 1988 May 1990 June 1977 June 1990 August 2008 March 1984 September 1979 October 1981 November 1981 June 1977 August 1982 November 1981 March 1984 October 1977 December 1982 December 1977 January 1982 March 1984 October 1984 July 1986 January 1979 March 1984

March 1984 October 1977 March 1984 August 1982

October 1977 December 1977 March 1984

TABLE 4 – MODEL DATES FOR RIVERINE FLOODING SOURCES - continued

STREAM NAME	<u>COMMUNITY</u>	MOST RECENT <u>MODEL DATE</u>
Mae Brook	Township of North Brunswick	December 1977
Manalapan Brook	Borough of Helmetta, Borough of	
	Jamesburg, Township of Monroe	October 1981
Manalapan Brook	Borough of Spotswood	August 1977
Matchaponix Brook	Borough of Spotswood	August 1977
Matchaponix Brook	Township of Old Bridge, Township of	
	Monroe	October 1981
Mellins Creek	Borough of Sayreville	June 1977
Mile Run	City of New Brunswick	October 1977
Mile Run	Township of North Brunswick,	December 1977
Mill Brook No.1	Borough of Highland Park	August 2008
Mill Brook No.2	Township of Edison	December 1982
Millstone River	Township of Cranbury	September 1979
Millstone River	Township of Monroe	October 1981
Millstone River	Township of Plainsboro	November 1981
Millstone River	Township of South Brunswick	March 1984
Oakeys Brook	Township of South Brunswick, Township of	
	North Brunswick	March 1984
Parkway Branch	Township of Woodbridge	January 1979
Pumpkin Patch Brook	Township of Woodbridge	January 1979
Rahway River	Township of Woodbridge	January 1979
Raritan River	Borough of Sayreville, Township of	
	Piscataway, City of New Brunswick, Borough of Middlesex, Township of East	
	Brunswick, Township of Edison	August 2008
Robinsons Branch	Township of Edison	December 1982
Robinsons Branch	Township of Edison	December 1982
Tributary	Township of Edison	December 1902
Sawmill Brook No. 1	Township of East Brunswick, Borough of	October 1977
	Milltown	
Sawmill Brook No. 2	Borough of Helmetta, Township of Monroe	October 1981
Shallow Brook	Township of Cranbury	September 1979
Shallow Brook	Township of Monroe	October 1981
Shallow Brook	Township of Plainsboro	November 1981
Shallow Brook	Township of South Brunswick	March 1984
Six Mile Run Branch	Township of South Brunswick	March 1984
Sixmile Run	Township of North Brunswick	December 1977
South Branch	Township of Woodbridge	August 2008
Rahway River		

14

TABLE 4 - MODEL DATES FOR RIVERINE FLOODING SOURCES - continued

STREAM NAME

<u>COMMUNITY</u>

MOST RECENT MODEL DATE

South River	Borough of Sayreville	June 1977
South River	Borough of South River	May 1977
South River	Borough of Spotswood	August 1977
South River	Township of East Brunswick	October 1977
South River		
	Township of Old Bridge	August 1982
Spa Spring Creek	City of Perth Amboy	August 1981
Spa Spring Creek	Township of Woodbridge	January 1979
Stream 14-14-2-2	Borough of South Plainfield	June 1977
Stream 14-14-2-3	Borough of South Plainfield	June 1978
Sucker Brook	Borough of Milltown	August 1977
Sucker Brook	Township of North Brunswick,	December 1977
Switzgable Brook	Township of South Brunswick	March 1984
Ten Mile Run	Township of South Brunswick	March 1984
Tennents Brook	Borough of Sayreville	June 1977
Tennents Brook	Township of Old Bridge	August 1982
Tributary A to	Township of South Brunswick	March 1984
Lawrence Brook		
Tributary No. 1 to Sucker Brook	Township of North Brunswick	December 1977
Tributary No. 1 to Ten Mile Run	Township of South Brunswick	March 1984
Tributary No. 2 to Ten Mile Run	Township of South Brunswick	March 1984
Tributary to Carters Brook	Township of South Brunswick	March 1984
Tributary to Cedar Brook No. 3	Borough of Spotswood	August 1977
Tributary to Cranbury	Township of Monroe	October 1981
Brook	Township of Courth December 1	Man-1, 1004
Tributary to Heathcote Brook	Township of South Brunswick	March 1984
Tributary to	Township of South Brunswick	March 1984
Lawrence Brook	T 11 016	0 1 1001
Tributary to Manalapan Brook	Township of Monroe	October 1981
Tributary to Mile Run	New Brunswick	October 1977
Tributary to Millstone River	Township of Cranbury	September 1979

TABLE 4 - MODEL DATES FOR RIVERINE FLOODING SOURCES - continued

STREAM NAME	<u>COMMUNITY</u>	MOST RECENT <u>MODEL DATE</u>
Tributary to Oakeys Brook	Township of South Brunswick	March 1984
Tributary to Sawmill Brook No. 2	Borough of Helmetta	October 1981
Tributary to Six Mile Run Branch	Township of South Brunswick	March 1984
West Branch Mill Brook No. 1	Borough of Highland Park	August 2008
Wigwam Brook	Township of Monroe, Borough of Jamesburg	October 1981
Woodbridge River	City of Perth Amboy	August 1981
Woodbridge River	Township of Woodbridge	January 1979

As part of this countywide FIS, updated analyses were included for the flooding sources shown in Table 5, "Scope of Revision."

TABLE 5 - SCOPE OF REVISION

Stream	Limits of Revised or New Detailed Study
Boundary Branch Mill Brook No. 1	From confluence with Mill Brook No. 1 to approximately 570 feet upstream of confluence with Mill Brook No. 1
Coppermine Brook	From confluence with South Branch Rahway River to approximately 1,820 feet upstream of Lincoln Highway
Mill Brook No. 1	From confluence with Raritan River to approximately 980 feet upstream of Harrison Street
Raritan River	Entire length within Middlesex County
South Branch Rahway River	From State Route 649 to approximately 400 feet upstream of Evergreen Avenue
West Branch Mill Brook No. 1	From confluence with Mill Brook No. 1 to approximately 170 feet upstream of abandoned railroad

This FIS also incorporates the determinations of letters issued by FEMA resulting in map changes (Letter of Map Revision [LOMR], Letter of Map Revision - based on Fill [LOMR-F], and Letter of Map Amendment [LOMA], as shown in Table 6, "Letters of Map Correction."

TABLE 6 - LETTERS OF MAP CORRECTION

<u>Community</u>	Flooding Source(s)/Project Identifier	Date Issued	Type
Township of Edison	Bound Brook: Updated hydraulic analyses and detailed topographic mapping to reflect a new bridge and fill placement	August 13, 1998	LOMR
Borough of Helmetta	Sawmill Brook No. 2 and Tributary to Sawmill Brook No. 2	June 28, 2007	LOMR
Borough of Metuchen	Dismal Brook: Updated floodplain delineation	May 28, 1998	LOMR
Borough of Milltown	Lawrence Brook: Correct location of John F. Kennedy Drive	January 27, 1994	LOMR
Township of Monroe	Unnamed Tributary to Manalapan Brook: Channelization	August 23, 2002	LOMR
Township of Monroe	Unnamed Tributary to Manalapan Brook	March 29, 2006	LOMR
Township of Piscataway	Ambrose Brook: Construction of culvert, modifications to the channel, and the placement of fill	July 18, 1995	LOMR
City of South Amboy	Raritan Bay: 500 Feet East of Intersection of George Street and Rosewell Street	March 29, 2006	LOMR
Township of South Brunswick	Lawrence Brook: Revised hydrologic and hydraulic analyses	November 11, 1998	LOMR
Borough of South Plainfield	Bound Brook	May 30, 2003	LOMR

TABLE 6 - LETTERS OF MAP CORRECTION - continued

<u>Community</u>	Flooding Source(s)/Project Identifier	Date Issued	Type
Borough of South River	South River: Corrected special flood hazard and corporate limits discrepancies	March 3, 1997	LOMR

All or portions of numerous flooding sources in the county were studied by approximate methods. Approximate analyses were used to study those areas having a low development potential or minimal flood hazards. For this revision, all areas of approximate flood hazard analyses were updated using the topography provided by Middlesex County and the flood frequency estimation techniques developed by the U.S. Geological Survey (USGS).

2.2 Community Description

Middlesex County is located in the central part of New Jersey. There are 25 communities in Middlesex County. The Boroughs of Dunellen and Middlesex, and the Township of Piscataway are located in the northwest portion of the county. The Boroughs of Highland Park, Metuchen, and South Plainfield, and the Township of Edison are located in the northern portion of the county. The Borough of Carteret, the City of Perth Amboy, and the Township of Woodbridge are located in the northeast portion of the county. The City of New Brunswick and the Townships of North Brunswick and South Brunswick are located in the western portion of the county. The Boroughs of Milltown, Sayreville, South River, and Spotswood, and the Township of East Brunswick are located in the central portion of the county. The City of South Amboy and the Township of Old Bridge are located in the southwest portion of the county. The Boroughs of Helmetta and Jamesburg and the Township of Cranbury are located in the southern portion of the county. The Township of Monroe is located in the southeast portion of the county.

Middlesex County is bordered to the north by Union County, New Jersey; to the northwest by Somerset County, New Jersey; to the northeast by Richmond County, New York; to the south by Monmouth County, New Jersey; and to the southwest by Mercer County, New Jersey.

According to the 2000 U.S. Census Bureau, the population of Middlesex County was 750,162, and the land area was 309.72 square miles (U.S. Census Bureau, 2000).

The topography of the county consists of marshes and wetlands along coastal and floodplains in the east. Geological formations and early glacial ages have left Lawrence Brook and other streams, with a natural divide between deposits with varying characteristics. Soils in portions of the county consist of clay underlain by

rock formations, while in other areas consist of cretaceous bedrock overlain with glacial deposits of gravel and sand from the relatively recent Quaternary Period.

The climate of Middlesex County is mostly continental due to the predominance of winds from the interior. Average seasonal temperatures range from 31 degrees Fahrenheit (°F) in January to 78°F in July, with extremes of 26°F below zero to 106°F. Average annual precipitation is 45 inches, while relative humidity averages about 70 percent.

2.3 Principal Flood Problems

Past history of flooding in Middlesex County indicates that flooding of varied origin may be experienced in any season of the year since New Jersey lies within the major storm tracks of North America. In Middlesex County, the low-lying areas along streams are subject to periodic flooding. Flooding during the winter months is less frequent, but spring flooding compounded by snowmelt and ice has occurred. The more extensive floods have occurred in late summer and fall, usually associated with tropical disturbances moving northward along the Atlantic Coast.

Two major floods that have occurred were Hurricane Doria in August 1971 and the flooding in Middlesex County of 1975 as a result of a continuing period of heavy rains. The 1975 flooding was produced from the combination of a tropical storm system arriving immediately following a storm which had already rainsoaked the area. Although varied flooding was experienced throughout Middlesex County, the maximum discharge on record at the Lawrence Brook gage occurred during this 1975 flood. This record discharge at Farrington Dam is similar to the discharge calculated for the 1-percent annual chance (100-year) flood (4,920 cubic feet per second (cfs)).

In the Townships of Plainsboro and Cranbury, on July 21, 1975, the gaging station (No. 01400730) at Plainsboro on the Millstone River registered a flood flow of 3,970 (cfs). Flood flows from the storm in Plainsboro caused damage to roads and several highway bridges.

In the Township of Cranbury, on July 21, 1975, Cranbury Brook flooded the central area of the Village of Cranbury. Damage was primarily flooded basements, though there was some shallow flooding of first-floor areas.

All of the major streams in the Township of Monroe are subject to periodic flooding. The principal area of flooding is in the floodplain of Matchaponix Brook. Flood flows were recorded on Manalapan Brook in 1968 and 1975 at Spotswood, which is just north of Monroe. The flows reflected flooding from both Manalapan Brook and Matchaponix Brook, which join upstream of the gaging station.

In the Borough of Jamesburg, flooding occurs from overflow of Manalapan Brook, Barclay's Brook, and Lake Manalapan. Floods were recorded on Manalapan Brook in 1968 and 1975 at the gaging station at Spotswood, which is approximately 5.5 miles downstream from Jamesburg.

In the Borough of Helmetta, Manalapan Brook has been subject to periodic flooding. Floods were recorded in 1958, 1975, 1989, and 2007 at the gaging station (No. 01405400) located approximately 2 miles downstream from Helmetta at Spotswood. There are no other records of flood problems in the Borough of Helmetta.

In the Township of South Brunswick, numerous low-lying areas are subject to flooding caused by the overflow of the streams in the area. In recent years, flooding has occurred along the Millstone River at the confluence of Heathcote Brook, along Heathcote Brook and its tributaries, along Ten Mile Run and Six Mile Run, and along Lawrence Brook, Oakeys Brook, and Cow Yard Brook. On Lawrence Brook, floods were recorded in 1927, 1928, 1938, 1944, 1959, 1967, 1968, 1971, 1975, and 1989. Most damage was to highways and associated works.

In the Township of North Brunswick, recorded gage history of flooding in the area began in 1927 at the gage on Lawrence Brook. Since then, a number of major and minor floods have been experienced, as indicated by peak stages and discharges recorded at the gage at Farrington Dam (USGS gage no. 0140-5000). The maximum recorded discharge for the gage is 4,920 cfs, which occurred in July 1975. North Brunswick has experienced flooding at various locations throughout the township such as along U.S. Route 1 and in some commercial developments. During the 1975 flood, Milltown Road was inundated and the police reported that roads were full of stalled and abandoned vehicles. Some of the flooding has been attributed to local drainage problems and is not considered as part of this study.

In the City of New Brunswick, the recorded gage history of flooding in the area began in 1903 for the Raritan River and in 1927 for Lawrence Brook. Since then, a number of major and minor floods have been experienced as indicated by peak stages and discharges recorded at the gage on the Raritan River at Calco Dam (USGS Gage No. 01403060) and the gage on Lawrence Brook at Farrington Dam (USGS Gage No. 01405000). The maximum recorded discharges for the gages are 82,900 cfs at Calco Dam, which occurred in September 1999, and 4,920 cfs at Farrington Dam, which occurred in July 1975. The City of New Brunswick has experienced flooding along the Raritan River and Lawrence Brook, with the more serious flooding being in the vicinity of Burnet Street near Lawrence Brook and Landing Road near the Raritan River. At times, the severity of this flooding has made it necessary to evacuate residents by boat.

In the City of South Amboy, many major floods have occurred since recent past. On November 25, 1950, a fierce northeaster struck the city with gale-force winds and more than 3 inches of precipitation. During the passage of that storm, a maximum tidal height of 9.5 feet was recorded at Perth Amboy. South Amboy, as well as most of New Jersey, was deluged on November 6-7, 1953, by heavy rains as a northeaster moved up the Atlantic coast. Striking the area with gale-force winds, the storm produced a tidal elevation of 8.9 feet at Perth Amboy. On September 12, 1960, the study area and most of New Jersey was hit by Hurricane Donna. Pounding the entire coastline with heavy rains accompanied by winds of nearly 70 miles per hour (mph), this storm caused the greatest flood of record in South Amboy. The concurrence of the hurricane tidal surge with the mean high tide resulted in a record maximum tide of 10.0 feet at South Amboy.

In South Amboy, on March 6-8, 1962, a storm, generating winds of 45 mph, with gusts up to 70 mph, remained in the New Jersey region for 60 hours. This unusually long duration coincided with five successive high spring tides. Severe flooding conditions along the entire coastline of New Jersey resulted from the high storm waters, strong waves, and gale-force winds. The city was hit by a disastrous flood on August 27, 1971. On that date, a warm front passed through the city. Severe thunderstorms associated with the front deluged the city with over 6 inches of rain. The flooding situation intensified as Tropical Storm Doria swept through the area later that evening and during the morning hours of the next day. The total rainfall from the thunderstorms and Tropical Storm Doria was almost 9 inches at Perth Amboy. A similar situation occurred on September 11-14, 1971, as heavy rains associated with violent thunderstorms preceded Tropical Storm Heidi. These two storms resulted in 140 million dollars in property damage throughout the State of New Jersey.

The Township of Old Bridge is subject to tidal flooding along Cheesequake Creek, and both tidal and fluvial floods on Tennents Brook, Iresick Brook, Deep Run, and the South River. The township also experiences fluvial flooding along Barclay Brook and Matchaponix Brook. Despite the numerous streams and low-lying areas found within the township, flood damage has been relatively minor. This is largely due to the fact that development in the natural floodplain areas of the streams in the community has been minimal. In general, the flood damages that occurred in the past have been due to inadequate storm drainage.

The Borough of Milltown has reported flooding at two locations on Lawrence Brook, the Riva Avenue Bridge and the Raritan River Railroad crossing downstream, of Main Street. Flooding in the area of Main Street and Washington Avenue has been attributed to the structure at the railroad crossing. The flooding of 1975 forced the closing of Main Street and three bridges to traffic. Sandbagging by the police was necessary to keep floodwaters out of the headquarters in Main Street. The post office, power substation municipal garage also had been affected.

The Borough of Highland Park experiences periodic flooding from the Raritan River, Mill Brook No. 1, West Branch Mill Brook No. 1, Boundary Branch Mill Brook No. 1, and Cedar Creek.

The Township of East Brunswick has experienced flooding along the Raritan and South Rivers, with the more serious flooding along Lawrence Brook. Stream flooding or local flooding has been reported along each of the major streams in the township. Serious flooding has occurred at almost all crossings of Irelands Brook. Flooding has been reported along Beaverdam Brook and on the upstream portion of Sawmill Brook. For public safety during the 1975 flood, it was necessary to close six roads, including State Route 18, Tices Lane, Rues Lane, and Cranbury Road.

The Borough of Sayreville has experienced flooding along the Raritan and South Rivers, with the more serious flooding contained in the vicinity of the Bordentown-Amboy Turnpike near Robert Street. At times, the severity of this flooding has made it necessary to evacuate residents by boat.

The Borough of South River has experienced flooding along the South River, with the more serious flooding being in the area of the main business section near Veteran Memorial Bridge. Also, tidal flooding has been experienced along Causeway and Freeman Streets.

The Borough of Spotswood has experienced flooding along the South River, Manalapan Brook, Matchaponix Brook, Cedar Brook, and Tributary to Cedar Brook. Localized flooding has been reported in several sections of the borough, particularly to the northeast of the railroad tracks; the most severe problem is located in the area between Crescent Avenue and New Brunswick Avenue.

The City of Perth Amboy and the Borough of Carteret are subject to flooding conditions resulting from tropical storms, extratropical cyclones, and to a lesser extent, severe thunderstorm activity. Most of the of the serious flood problems are attributed to tropical storms, especially hurricanes, which produce high tidal surges and associated wave action on Raritan River (in Carteret), Raritan Bay, and Arthur Kill.

In the Township of Woodbridge the flooding along the Raritan River is principally tidal from the Raritan Bay. Both the Rahway and Woodbridge Rivers are inundated by the 1-percent annual chance tidal flood from Arthur Kill. The 1-percent annual chance tidal flood also inundates the lower portions of Heards Brook and most of Spa Spring. Both the South Branch Rahway River and Pumpkin Patch Brook are periodically subject to riverine flooding.

There are essentially no major flooding problems within the Borough of Metuchen.

Little specific flood information is available for the streams in the Township of Edison, but it is known that floods occurred as early as 1903 in the general area and again in 1916, 1928, and 1968.

The Borough of South Plainfield has experienced recurrent flooding problems along the major portion of streams. Recorded flooding history for Bound Brook

dates back to 1833; since that time, six major floods have occurred in the Bound Brook drainage basin (October 9, 1903; July 26, 1916; July 23, 1938; May 29, 1968; August 28, 1971; and August 2, 1973).

In the Borough of Dunellen, as storms approach and cross the Watchung Mountains from the south or east, rainfall becomes intensified on the southeastern side of the mountains resulting in damaging erosion and sediment deposition.

In the Borough of Middlesex, recorded history of flooding in the Greek Brook basin goes back as far as 1893. Flooding on Green Brook has been described as "flashy" or producing severe flood conditions due to the high intensity of rainfall for a short duration. Flood damage in the basin is more common and severe than elsewhere in the Raritan River basin because of encroachments that have and are taking place in the floodplains. At some locations, conditions are so bad that buildings have been constructed over the top of the stream, and the floodplains have been virtually eliminated. This situation has been further aggravated by construction of numerous hydraulically inadequate bridges along Green Brook. Flooding in the Bound Brook Basin is very closely interrelated with flooding in the Green Brook Basin.

The Township of Piscataway has had isolated cases of serious flooding in the past. Areas adjacent to the Raritan River have become inundated during severe storms. Flooding along Ambrose Brook, characteristically floods roads and underpasses, most notably the Reading Railroad underpass and the Interstate Route 287 underpass on Possumtown Road. Bonygutt Brook causes some local roadway flooding, particularly in the area of Rock Avenue. The most serious flooding problem occurs on Bound Brook, just downstream of New Market Lake.

2.4 Flood Protection Measures

FEMA specifies that all levees must have a minimum of 3-foot freeboard against 1-percent annual chance flooding to be considered a safe flood protection structure.

The National Weather Service provides municipalities with an early warning of expected flooding, particularly in the case of intense hurricanes.

There are no major flood control structures or measures existing, authorized, or proposed in the Boroughs of Highland Park, Metuchen, and South River; in the Cities of Perth Amboy and South Amboy; and in the Townships of Old Bridge and Piscataway.

The Township of Piscataway provides for the cleaning of stream channel and drainage facilities of debris and siltation as required.

While there are a number of dams located within the South River Basin, they were not designed with capacities for flood control.

There are dams located on Devils Brook and Shallow Brook; however, they do not affect the flood flows.

There are no flood protection works in the Townships of Cranbury, Monroe, Plainsboro, and South Brunswick, and the Boroughs of Jamesburg and Spotswood. New construction is subject to the requirements of a township ordinance restricting construction in floodplain areas in accordance with FEMA initial land-use regulation requirements.

The New Jersey Department of Environmental Protection (NJDEP) has adopted rules, regulations, and minimum standards concerning development and use of land, which apply to development in the Boroughs of Helmetta, Milltown, Sayreville, South River and Spotswood, and the City of New Brunswick, and to the Townships of East Brunswick, Monroe, North Brunswick, and South Brunswick.

An arrangement is in effect with the Township of Cranbury that, when the floodgates are opened at Brainerd Lake in Cranbury, Plainsboro is notified. This provides approximately two hours warning for Plainsboro Pond to be watched for rising water levels.

The Borough of South Plainfield has lowered the water-surface elevation at Spring Lake in an attempt to increase retention.

Since the storm of August 2-3, 1973, emergency funds have been used to clear and snag Green Brook and to remove some of the vegetation that had impeded flow in the past. Fill was removed from the floodplain of Green Brook to the encroachment limit as outlined in Flood Hazard Report No. 3 (State of New Jersey, DEP, 1972).

In an effort to tackle flood problems on a regional basis, the Green Brook Flood Control Committee was formed, comprised of representatives from each of the municipalities adjoining Green Brook. The committee is pursuing a number of flood control measures, such as: 1) promoting municipal adoption of floodplain zoning regulations to control development within flood-prone areas along Green Brook and its tributaries; 2) recommending that municipalities annually appropriate funds for the purchase of these flood-prone areas and develop this land into a Green Brook strip park; and 3) pursuing with the USACE the feasibility of developing flood-control projects to alleviate the flooding of existing facilities located in these flood-prone areas.

In the Township of Edison, the only flood protection structures within the study area are located along Bonhamtown Brook in the form of diversion tunnels on Bernard Street and Dorothy Avenue. The diversion tunnels convey flows directly to Mill Brook. The township has also attempted to increase culvert openings on several streams to reduce flooding upstream. There are some non-structural measures of flood protection being used to aid in the prevention of future flood damage. These are in the form of land-use regulations adopted by Edison to control building in the floodplains. The Boroughs of Sayreville and Milltown have no formal structural measures designed specifically for flood protection, but flows on the Raritan River are regulated by Spruce Run and Round Valley reservoirs.

In the Township of East Brunswick, flows in the lower portion of Lawrence Brook are regulated within the township by the Farrington Reservoir. The reservoir has a storage capacity of 655 million gallons. The township has no other formal structural measures designed specifically for flood protection; flows on the Raritan River are regulated by the Spruce Run and Round Valley Reservoirs. The levee located within the township does not meet the FEMA freeboard requirement.

While there are a number of dams within the Lawrence Brook Basin, they were not designed with capacities for flood control.

The use of the FIA Flood Hazard Boundary Map (U.S. Department of Housing and Urban Development, July 1976), for the Borough of Milltown and the City of New Brunswick is used in a manner consistent with sound floodplain zoning, and the possible acquisition of land for open-space application, are potential non-structural measures for mitigating future flood damages.

Several minor channel improvements have been made along Pumpkin Patch Brook. These were primarily to prevent erosion and do not affect the flood elevations significantly.

In the Township of Woodbridge, the levee constructed on the north side of the South Branch Rahway River between Wood Avenue and the Garden State Parkway protects that area of the industrial park from storms up to a 1-percent annual chance recurrence interval. This levee does not meet FEMA specifications; flood boundaries have been delineated outside the levee. The replacement of the New Dover Road bridge and the channel improvements from the Rahway River upstream to the county park have significantly reduced flooding. Heards Brook and its tributary have been improved from its mouth upstream to Metuchen Avenue. These improvements include a system of trapezoidal and rectangular concrete channels, a well-defined earthen channel, and a massive culvert project under the railroad crossing. Wedgwood Brook has also been improved from its mouth upstream to the railroad embankment.

In the Borough of Carteret, flood protection measures include filling in land in low areas to provide higher elevations before construction, and installing check valves on storm and sanitary lines to prevent back-up in areas of low development.

In the Township of North Brunswick, the Farrington Dam regulates flows in the lower portions of Lawrence Brook. This reduces the flows in that area of the township between Milltown and New Brunswick. The township contains no other formal structural measures designed for flood protection. This township uses the U.S. Department of Housing and Urban Development Flood Boundary and Floodway Map in a manner consistent with sound floodplain zoning.

The City of New Brunswick has no formal structural measures designed specifically for flood protection. But flows on the Raritan River are regulated by the Spruce Run and Round Valley Reservoirs. Flows in the lower portion of Lawrence Brook are regulated by the Farrington Reservoir (capacity 655 million gallons).

Lake Manalapan Dam is located on the southern corporate limits of Jamesburg with the Township of Monroe. It provides a minimal amount of flood protection to the Borough of Jamesburg, as it affects flows on Manalapan Brook.

3.0 ENGINEERING METHODS

For the flooding sources studied in detail in the county, standard hydrologic and hydraulic study methods were used to determine the flood hazard data required for this FIS. Flood events of a magnitude which are expected to be equaled or exceeded once on the average during any 10-, 50-, 100-, or 500-year period (recurrence interval) have been selected as having special significance for floodplain management and for flood insurance rates. These events, commonly termed the 10-, 50-, 100-, and 500-year floods, have a 10-, 2-, 1-, and 0.2-percent chance, respectively, of being equaled or exceeded during any year. Although the recurrence interval represents the long term average period between floods of a specific magnitude, rare floods could occur at short intervals or even within the same year. The risk of experiencing a rare flood increases when periods greater than 1 year are considered. For example, the risk of having a flood which equals or exceeds the 100-year flood (1-percent chance of annual exceedence) in any 50-year period is approximately 40 percent (4 in 10), and, for any 90-year period, the risk increases to approximately 60 percent (6 in 10). The analyses reported herein reflect flooding potentials based on conditions existing in the county at the time of completion of this FIS. Maps and flood elevations will be amended periodically to reflect future changes.

3.1 Hydrologic Analyses

Hydrologic analyses were carried out to establish the peak discharge-frequency relationships for the flooding sources studied in detail affecting the county.

For each community within Middlesex County that has a previously printed FIS report, the hydrologic analyses described in those reports have been compiled and are summarized below.

Precountywide Analyses

Discharges for Bee Brook, Cow Yard Brook, Six Mile Run Branch, Switzgable Brook, Tributary to Carters Brook, Tributary to Cedar Brook, Tributary to Heathcote Brook, Tributary to Lawrence Brook, Tributary to Manalapan Brook, Tributary to Millstone River, Tributary No.1 to Sucker Brook, Tributary to Six Mile Run, Tributary to No. 1 to Ten Mile Run, Tributary to No.2 to Ten Mile Run were determined using the Rational Method, which obtains flows using the watershed, a coefficient of runoff based on surface conditions within the watershed, and the

intensity of rainfall based on concentration time. Varying values of the runoff coefficient were used for different flood frequencies as suggested in the <u>Modified</u> <u>Rational Method of Estimating Flood Flows</u> (National Resources Committee, 1938).

Discharges for Barclay Brook, Barclay's Brook, Beaverdam Brook, Bentley's Brook, Bog Brook, Carters Brook, Cedar Brook No. 1, Cedar Brook No. 2, Cheesequake Creek, Clear Brook, Cranbury Brook, Crossway Creek, Deep Run, Devils Brook, Doty's, Great Ditch, Heards Brook, Heathcote Brook, Heathcote Brook Branch, Ireland Brook, Iresick Brook, Mae Brook, Mellins Creek, Mile Run, Oakeys Brook, Parkway Branch, Pumpkin Patch Brook, Sawmill Brook, Shallow Brook, Six Mile Run, South Branch Rahway River, Stream 14-14-2-2, Stream 14-14-2-3, Sucker Brook, Ten Mile Run, Tennents Brook, Tributary to Cranbury Brook, Tributary to Mile Run and Tributary to Oakeys Brook were based on the method for estimating flood-peak magnitudes shown in Special Report 38 (U.S. Department of the Interior, 1974). This method is based on a multiple regression analysis used to develop mathematical relationships between hydrologic characteristics and flood discharges at the various recurrence intervals (50-, 10-, 2-, 1-annual chance flood) obtained from gaging station data. Flood information from 103 sites was used in making the analysis. Hydrologic parameters included drainage area, main channel slope, surface storage area, and an index of manmade impervious cover based on basin population and development conditions. The 0.2percent annual chance flood was extrapolated from the lower frequency floods.

Peak discharges for Robinsons Branch and Robinsons Branch Tributary were based on stream flow records at the USGS gage (No. 01396000) at Milton Lake. Values for the 10-, 2-, 1-, and 0.2-percent annual chance flood calculated from a log-Pearson Type III statistical distribution of the annual peak flows from 1940 through 1977, using a weighted gage skew coefficient (Water Resources Council, 1976 & 1967). The flows calculated at the gage were transposed to other specific sites along Robinson Branch and Robinsons Branch Tributary using the drainage areadischarge formula shown above. A transfer coefficient of 0.85 was used since the resulting discharges agreed well with those used in the FIS for Scotch Plains (U.S. Department of Housing and Urban Development, 1977).

Peak discharge-frequency relationships for Matawan Creek were based on a statistical analysis of the stream flow at the discontinued Lake Lefferts stream gage located in the Borough of Matawan (period of record: 1932-1955). Flood-frequency analysis procedures from the Water Resource Council Bulletin 17 (Water Resource Council, 1976) were used. A log-Pearson Type III distribution of annual peak flows at this stream gage was used to determine values of 10-, 2-, 1-, and 0.2-percent annual chance peak discharges (Water Resource Council, 1967). Flows calculated at this gage were transposed to different drainage areas using a drainage area-discharge relationship.

Peak discharges for Mill Brook No. 2 and Bonhamtown Brook were computed using Special Report 38 at the downstream limits of detailed study and the Rational Method at the upstream corporate limits (NJDEP, 1976). Discharges along specific portions of the streams are influenced by the diversion tunnels on Bonhamtown Brook that divert flow from it to Mill Brook above the natural confluence of the streams. The natural and diverted flows for the selected recurrence intervals were determined by hydraulic analyses of the streams and tunnel system.

In the Township of Brunswick, the upper portion of Lawrence Brook (below Monmouth Junction Road and Ridge Road), there is no watershed ridge line between Switzgable Brook and Lawrence Brook. It was necessary to reduce the discharges in the lower portion of Lawrence Brook and increase the discharges for Switzgable Brook and Heathcote Brook.

In the Township of North Brunswick, the upper portion of Oakeys Brook, a diversion channel under the railroad made it necessary to reduce discharges in the main stream. This splitting of the total discharge values was performed through an analysis of both the main stream and the diversion channel to ensure hydraulic continuity at the downstream and upstream ends of the diversion.

For the Rahway River, peak discharges were calculated using the USACE HEC-1 flood hydrograph computer package (USACE, 1973). The HEC-1 model was developed by the USACE Hydrologic Engineering Center (HEC) for the New York District of the USACE in 1976 (USACE, 1976). The model separated the Rahway River into 13 sections of similar hydrologic and hydraulic characteristics, developed flood hydrographs for each section, and routed and combined these hydrographs down the river. The entire model was calibrated to reproduce measured hydrographs at both the USGS gaging stations located at Springfield and Rahway, New Jersey.

For Tributary to Sawmill Brook No. 2, hydrologic analyses were developed using a method for estimating flood-peak magnitudes (U.S. Department of the Interior, 1974). The method is based on a multiple regression analysis used to develop mathematical relationships between flood discharges at the various recurrence intervals (50-, 10-, 2-, and 1-percent annual chance flood) obtained from gaging station data and hydrologic characteristics. Flood information from 103 sites was used in making the analysis. Hydrologic parameters included stream drainage area, main channel slope, surface storage area, and an index of manmade impervious cover based on basin population and development conditions. The 0.2-annual chance flood discharge value was extrapolated from the lower frequency floods.

In the Township of Piscataway, peak discharge-frequency relationships were developed for Ambrose Brook and Bound Brook using methods outlined in Special Report 38 (NJDEP, 1974). Special Report 38 is based on a regression analysis of 103 gages in New Jersey and is used to estimate peak flood magnitudes having selected recurrence intervals for drainage areas larger than 1.0 square mile with various degrees of suburban development. The parameters of basin size, channel slope, surface storage and population density are used in this method.

In the Borough of Middlesex, peak discharges for floods of selected recurrence intervals for the lower portion of Green Brook and Bound Brook were obtained from the <u>Supplemental Flood Hazard Study X</u> (NJDEP, Unpublished).

Peak discharges for floods of the selected recurrence intervals on the upper portion of Green Brook were developed using the following drainage area-discharge relationship:

$$Q_1/Q_2 = (A_1/A_2)^T$$

Where Q_1 is the resulting peak discharge at the site, Q_2 is the peak discharge at the site immediately downstream, A_1 and A_2 are the drainage areas at the two sites, and T is the transfer coefficient. The transfer coefficients used at the various sites on Green Brook are listed below:

Location	<u>T</u>
Just upstream of the confluence	
of Ambrose Brook	0.73
Just upstream of the confluence	
of Bound Brook	0.24
Just upstream of the confluence	
of Bonygutt Brook	0.28

The same transfer relationship was used to develop discharges for Ambrose Brook from its confluence with Green Brook. The transfer coefficients range from 0.86 to 0.95.

In the Borough of Dunellen, the same parameters used in modeling the Bound Brook watershed formed the basis for the development of peak discharges for Bonygutt Brook. Due to the small size of the Bonygutt Brook subwatershed, it was necessary to adjust (lower) discharges as small contributing drainage areas produced the peak at points further upstream. Also, the railroad culvert was routed as a discharge-reducing structure and the appropriate adjustments were made on peak discharges downstream from that point.

In the Township of Piscataway and in the Borough of Middlesex, peak dischargefrequency relationships were developed for Bonygutt Brook using methods outlined in Special Report 38 (U.S. Department of the Interior, 1974).

In the Borough of Highland Park, water-surface elevations of floods of the selected recurrence intervals were computed through use of the USACE HEC-2 stepbackwater computer program.

In the Township of Edison, discharges for Bound Brook and Dismal Brook were calculated using Special Report 38 (U.S. Department of the Interior, 1974). The resulting discharge-frequency curves were adjusted to coincide with the discharge information in Flood Hazard Report No. 15 (NJDEP, 1973). The flows were

transposed to specific sites along Bound Brook and Dismal Brook using the drainage area-discharge formula shown above. A transfer coefficient of 0.71 was used since the resulting discharges agreed well with those used in the FISs for South Plainfield and Metuchen (FEMA, 1979 & 1977).

In the Borough of Metuchen, peak discharge-frequency relationships were developed for Dismal Brook using methods outlined in Special Report 38 (NJDEP, 1974).

In the Borough of South Plainfield, discharges for Bound Brook to its confluence with Cedar Brook No. 2 were calculated using Special Report 38, prepared by the USGS in cooperation with the NJDEP (U.S. Department of the Interior, 1974). The resulting frequency-discharge curves were adjusted to coincide with the discharge information from Flood Hazard Report No. 15, published by the NJDEP (1973). Discharges for the remainder of Bound Brook within the borough were determined by the USACE for the Piscataway FIS (U.S. Department of Housing and Urban Development, unpublished).

In the Borough of Dunellen, discharges for Green Brook were then computer based on rainfall-frequency relationships as adjusted in accordance with the dischargefrequency data obtained from USGS gage No. 4035 on Green Brook at Plainfield, New Jersey (U.S. Department of Commerce, 1963). Frequency analysis of historic events indicates that Tropical Storm Doria has a recurrence interval of approximately 100 years on Green Brook. Portions of the watershed, however, experienced flood peaks that approached the 0.2-percent annual chance frequency level. The storm of August 2-3, 1973, has a recurrence interval greater than 500 years on Green Brook in the Borough of Dunellen. This storm has a recurrence interval of approximately 150 years on Bonygutt Brook. These findings appear to be consistent with the rainfall patterns and stream flow conditions prior to these flood events. In considering floods of such magnitude, the washing out of bridges, scouring of stream banks, and temporary restrictions due to debris carried by the flood are unpredictable. This makes greater precision in determining peakfrequency relationships beyond the scope of this study.

In the Township of Plainsboro, flood flows for the Millstone River were based on stream gage records. Flows calculated for the gage located at Kingston (No. 01460500 - 29 years of record for Township of Plainsboro FIS, dated December 1984) were transposed to specific locations on the Millstone River according to the following drainage area-discharge formula:

$$Q_{T}/Q_{G} = (A_{1}/A_{2})^{T}$$

Where Q_T is the discharge at a specific location, A_1 is the drainage area at that point, Q_G is the discharge at the gage, A_2 is the drainage area at the gage, and T is the transfer exponent. A value for T of 0.75 was used for the Millstone River. Values of the 10-, 2-, 1-, 0.2-annual chance flood peak discharges were calculated at the gage using a log-Pearson Type III analysis of annual peak flow data and the natural gage skew (Water Resources Council, 1967). For the portion of the Millstone River studied in the Township of Cranbury, a value of 0.75 was considered to be representative for T.

In the Township of Monroe, there are several gaging stations on the Millstone River. Discharge data for the three gaging stations were obtained and evaluated. Only data for the gaging station (No. 01402000) at Blackwell's Mills were adopted for this study, since the station has a long period of record with reliable data. For the Monroe FIS dated April, 1985, 55 years of record were used in the log-Pearson Type III analysis of computed peak discharge values (Water Resource Council, 1967). Discharges for the Millstone River were obtained based on the ratio from Flood Hazard Report No. 12 and the discharge for the gaging station (NJDEP, 1973).

In the Township of South Brunswick, discharges for Lawrence Brook and the Millstone River were based on stream gage records. Values for the discharges were calculated at the gage using a log-Pearson Type III analysis of annual peak flow data and the natural gage skew (Water Resource Council, 1967). Flows calculated at the gaging station (No. 01405000, 68 years of record) at Farrington Dam on Lawrence Brook were transposed to specific locations on Lawrence Brook according to the following drainage area-discharge formula:

$$Q_{T}/Q_{G} = (A_{1}/A_{2})^{T}$$

A value of 0.5 was used for the transfer exponent T. The transposed discharges from the equation were then weighted with discharges obtained using the regional equation from Special Report 38 (U.S. Department of the Interior, 1974).

Peak discharges for Spa Spring Creek were determined using an average of the Rational Method and the Special Report 38 relationships. The two methods were used because the drainage area for the stream varies from 0.6 and 1.4 square miles and is close to the acceptable drainage area limits of both methods (the upper limit for the Rational Method and the lower limit for the Special Report 38 method). Runoff coefficients for the Rational Method were estimated by field observations based on published values for different land uses (Ven Te Chow, 1959).

Peak discharges for Wigwam Brook were determined using the Rational Method in the Township of Monroe and the Special Report 38 method in the Borough of Jamesburg.

Peak discharges for the Woodbridge River in the Township of Woodbridge were determined using Flood Runoff index curves developed by the New Jersey Department of Conservation and Economic Development, now the Department of Environmental Protection (New Jersey Department of Conservation and Economic Development, 1951).

In the Boroughs of Helmetta, Jamesburg, and Spotswood, and the Township of Monroe, the gaging stations located on the South River at Old Bridge (No. 01405500) and on Manalapan Brook at Spotswood (No. 01405400) were the

principal sources of data for defining discharge-frequency relationships for Manalapan Brook and Matchaponix Brook. The gages have been in operation since 1939 and 1957, respectively. Values of peak discharges were obtained from a log-Pearson Type III distribution of annual peak flow data (Water Resources Council, 1967). Discharges for Manalapan Brook and Matchaponix Brook were determined based on the ratio from Flood Hazard Reports No. 17 and No. 8 and the discharge for the two gaging stations (NJDEP, 1974 & 1973). In the Borough of Spotswood, Matchaponix Brook was studied with a log-Pearson Type III analysis of annual peak flow data and natural gage skew (Water Resources Council, 1976). Flows calculated for the gages located in Spotswood and at Old Bridge were transposed to specific locations according to the following drainage area-discharge formula:

$$\mathbf{Q}_{\mathrm{T}}/\mathbf{Q}_{\mathrm{G}} = \left(\mathbf{A}_{1}/\mathbf{A}_{2}\right)^{\mathrm{T}}$$

A value of 0.5 was used for T for Matchaponix Brook.

Flows for Lawrence Brook, Raritan River, and South River were based on stream gage records. Values for the 10-, 2-, 1-, and 0.2-annual chance flood peak discharges were calculated at the gages using a log-Pearson Type III analysis of annual peak flow data and the natural gage skew (Water Resources Council, 1976). Flows calculated for gages located on the Raritan River at Calco Dam, on the South River at Old Bridge, and on Lawrence Brook at Farrington Dam were transposed to specific locations according to the following standard area-discharge formula:

$$Q_1/Q_2 = (A_1/A_2)^T$$

For the Raritan River, a value of 0.8 was used for T, which corresponds to a previous study for this portion of the river. For the South River and Lawrence Brook, a value of 0.5 was considered to be more representative.

Countywide Analyses

Information on the methods used to determine peak discharge-frequency relationships for the streams restudied as part of this countywide FIS is shown below.

Peak discharge-frequency relationships were developed for Mill Brook No. 1, Boundary Branch Mill Brook No.1 and West Branch Mill Brook No. 1, using methods outlined in Special Report 38 (U.S. Department of the Interior, 1974). Special Report 38 is based on a regression analysis of 103 gages in New Jersey and is used to estimate peak flood magnitudes having selected recurrence intervals for drainage areas larger than 0.63 square mile with various degrees of suburban development. The parameters of basin size, channel slope, surface storage and population density are used in this method.

Peak discharges on the South Branch Rahway River from the effective Township of Woodbridge FIS were utilized from the beginning of the hydraulic model to the confluence with Coppermine Brook. Upstream of the confluence with Coppermine Brook, methods and procedures outlined in New Jersey Special Report 38 (U.S. Department of the Interior, 1974) were utilized to determine peak discharges. Peak discharges on Coppermine Brook were calculated utilizing Special Report 38.

A summary of the drainage area-peak discharge relationships for all the streams studied by detailed methods is shown in Table 7, "Summary of Discharges."

FLOODING SOURCE	DRAINAGE AREA	PEAK DISCHARGES (cfs)				
AND LOCATION	<u>(sq. miles)</u>	10-PERCENT	<u>2-PERCENT</u>	<u>1-PERCENT</u>	0.2-PERCENT	
AMBROSE BROOK At confluence with Green						
Brook At Middlesex – Piscataway	14.2	1,760	2,735	3,265	4,575	
corporate limits	12.8	1,600	2,480	2,990	4,180	
At Hoes Lane	9.68	1,325	2,070	2,500	3,485	
Upstream of Doty's Brook	7.12	1,040	1,635	1,977	2,650	
At Lake Nelson Dam	5.03	735	1,170	1,425	1,915	
At So. Washington Avenue	4.52	670	1,071	1,300	1,410	
BARCLAY BROOK At confluence with Matchaponix Brook	6.0	700	1,140	1,390	2,110	
Upstream of confluence with first tributary just above Englishtown Road	3.7	430	710	870	1,335	
Upstream of confluence with third tributary upstream of Englishtown						
Road	2.1	380	630	780	1,210	
BARCLAY'S BROOK At its confluence with						
Manalapan Brook	1.95	390	655	820	1,300	
Upstream of Forge Street Upstream of confluence	1.80	360	610	760	1,220	
of an unnamed tributary	1.26	245	420	530	860	
BEAVERDAM BROOK ¹ Downstream of confluence with Lawrence						
Brook Downstream of limit of	2.1	375	575	700	1,000	
detailed study	0.6	195	315	420	610	
BEE BROOK At confluence with Devils						
Brook	0.99	215	310	380	510	

¹Discharge values reduced downstream of restrictive New Jersey Turnpike culvert

FLOODING SOURCE	DRAINAGE AREA	AREA PEAK DISCHARGES (cfs)				
AND LOCATION	<u>(sq. miles)</u>	10-PERCENT	<u>2-PERCENT</u>	<u>1-PERCENT</u>	0.2-PERCENT	
BENTLEY'S BROOK At confluence with Millstone River	4.40	580	970	1,215	1,940	
BOG BROOK At confluence with Lawrence Brook At Kuhlthau Avenue	1.4 0.7	90 65	155 115	190 140	290 205	
At upstream Milltown – East Brunswick corporate limits Downstream of limit of	0.4	45	80	95	145	
detailed study	0.3	45	80	95	145	
BONHAMTOWN BROOK At confluence with Mill Brook	1.0	50	155	220	500	
At Edison – Metuchen corporate limits	0.9	450	610	690	940	
BONYGUTT BROOK At confluence with Green Brook At Middlesex – Dunellen corporate limits At Dunellen – Piscataway corporate limits	2.6 2.2 2.1	515 475 165	810 700 305	975 900 395	1,425 1,400 685	
BOUND BROOK At Middlesex – Piscataway corporate limits At confluence with Green Brook Just upstream of Stream	24.2 21.0	1,530 1,640	2,800 3,100	3,550 4,050	6,000 7,600	
14-14-2-2 Just upstream of Stream	18.6	1,640	3,100	4,050	7,600	
14-14-2-3 Upstream of New Market	16.6	1,640	3,100	4,050	7,600	
Lake Dam Just upstream of Cedar	16.2	1,640	3,100	4,050	7,600	
Brook No. 2 Just upstream of the second	9.8	980	2,000	2,600	5,000	
crossing of railroad Approximately 800 feet downstream of Woodbrook	8.4	930	1,800	2,400	4,500	
Road	5.4	730	1,350	1,800	3,300	
At Railroad	3.1	495	915	1,220	2,235	

FLOODING SOURCE	DRAINAGE AREA			HARGES (cfs)	
AND LOCATION	<u>(sq. miles)</u>	<u>10-PERCENT</u>	<u>2-PERCENT</u>	<u>1-PERCENT</u>	0.2-PERCENT
BOUNDARY BRANCH MILL BROOK NO. 1 At confluence with Mill Brook No. 1	0.75	244	396	483	718
Will Drook 110. 1	0.75	211	570	105	, 10
CARTERS BROOK At confluence with Heathcote Brook	2.12	500	830	1,035	1,615
At Raymond Road	1.2	320	540	675	1,070
At Mid Point	0.82	215	390	500	760
At Old Road	0.56	160	280	350	520
CEDAR BROOK NO. 1 At confluence with Cranbury Brook	5.0	570	960	1,200	1,930
Upstream of confluence of	5.0	570	200	1,200	1,750
Tributary No. 2 Upstream of confluence of	3.7	475	800	1,000	1,610
Tributary No. 3	2.2	335	570	715	1,165
At Cranbury-Monroe					
corporate limits	1.20	210	350	465	730
At Applegarth Road	0.92	185	310	410	610
CEDAR BROOK NO. 2 At confluence with Bound Brook	6.47	1,152	1,861	2,120	3,300
CEDAR BROOK NO. 3 At confluence with					
Manalapan Brook Downstream of	3.22	120	200	250	370
confluence with Tributary to Cedar Brook No. 3 Upstream of confluence with Tributary of Cedar	3.17	115	195	245	360
Brook No. 3 At Spotswood-East	3.05	105	190	235	350
Brunswick corporate limits	1.02	30	60	80	110
CHEESEQUAKE-MELLINS CREEK At downstream Old Bridge –					
Sayreville corporate limits Downstream of the confluence of Crossway	7.4	165	280	345	500
Creek	5.7	155	265	320	470

FLOODING SOURCE	DRAINAGE AREA					
AND LOCATION	(sq. miles)	10-PERCENT	<u>2-PERCENT</u>	1-PERCENT	0.2-PERCENT	
CHEESEQUAKE-MELLINS CREEK (continued) Upstream of confluence						
of Crossway Creek Downstream of Garden State	3.8	75	135	165	250	
Parkway Downstream of	3.6	65	120	150	230	
confluence of Mellins Creek At mouth of Mellins	3.4	60	115	140	220	
Creek At upstream Old Bridge –	0.9	45	95	130	160	
Sayreville corporate limits	0.7	40	80	110	135	
CLEAR BROOK At confluence with Cranbury Brook	1.20	220	385	485	785	
At Union Valley-Half Acre Road	0.64	*	*	141.9	*	
COPPERMINE BROOK Upstream of confluence with South Branch Rahway River	2.2	370	600	730	1,100	
COW YARD BROOK At confluence with						
Oakeys Brook	0.68	210	315	370	500	
At Black Horse Lane	0.59	195	300	360	490	
At Deans Road	0.48	190	280	330	440	
CRANBURY BROOK At confluence with the						
Millstone River At Cranbury-Plainsboro	21.3	710	1,180	1,450	2,295	
corporate limits Upstream of confluence of	18.2	670	1,120	1,380	2,190	
Cedar Brook No. 1	13.1	595	1,000	1,230	1,960	
Upstream of Main Street	10.7	530	890	1,100	1,755	
Upstream of railroad	9.26	435	735	910	1,455	
Upstream of confluence						
of Clear Brook	7.16	315	540	670	1,085	
Upstream of confluence of Tributary to Cranbury						
Brook	4.02	245	420	525	850	
At Longstreet Road	1.71	150	300	390	580	

*Data not available

FLOODING SOURCE	DRAINAGE AREA	PEAK DISCHARGES (cfs)				
AND LOCATION	<u>(sq. miles)</u>	10-PERCENT	<u>2-PERCENT</u>	<u>1-PERCENT</u>	0.2-PERCENT	
CROSSWAY CREEK At confluence with Cheesequake Creek	1.9	425	685	840	1,130	
Downstream of Garden State Parkway	1.0	340	545	670	950	
Upstream of Garden State Parkway Approximately 880 feet	0.4	200	320	400	500	
upstream of Frank Avenue culvert	0.1	20	55	90	130	
DEEP RUN At Old Bridge-Sayreville corporate limits Upstream of confluence with	16.1	955	1,545	1,875	2,845	
tributary from Burnt Fly Bog	9.4	1,260	2,030	2,485	3,800	
DEVILS BROOK At confluence with the Millstone River	16.4	745	1,245	1,535	2,445	
Upstream of confluence of Bee Brook	14.7	695	1,165	1,435	2,285	
Upstream of confluence of Shallow Brook	6.9	420	710	880	1,425	
At the Plainsboro-South Brunswick corporate limits	4.4	290	505	630	1,020	
At Culver Road	3.43	255	440	550	895	
At Hay Press Road	1.70	240	415	525	855	
DISMAL BROOK At its confluence with Bound						
Brook At the Edison-Metuchen	1.7	325	600	800	1,460	
corporate limits	1.2	310	500	605	1,030	
DOTY'S BROOK At confluence with Ambrose						
Brook	2.04	452	730	893	1,215	
At Corporate Place South	0.94	254	395	516	665	
GREAT DITCH Upstream of confluence						
with Lawrence Brook	8.65	170	300	380	580	

FLOODING SOURCE	DRAINAGE AREA	PEAK DISCHARGES (cfs)				
AND LOCATION	<u>(sq. miles)</u>	10-PERCENT	<u>2-PERCENT</u>	<u>1-PERCENT</u>	0.2-PERCENT	
GREEN BROOK At confluence with Raritan River Just upstream of	65.0	7,500	11,000	12,500	16,750	
confluence of Ambrose Brook Just upstream of	51.2	6,300	9,240	10,500	14,070	
confluence of Bound Brook Just upstream of	24.3	5,270	7,730	8,800	11,765	
confluence of Bonygutt Brook Approximately 780 feet from	21.5	5,095	7,470	8,500	11,370	
Warrenville Road Downstream of North	21.51	3,720	6,200	8,500	14,400	
Washington Avenue	20.44	3,650	6,100	7,900	14,400	
HEARDS BROOK At mouth At Elmwood Avenue At State Route 9	2.4 1.4 0.9	640 470 310	1,010 750 510	1,230 910 630	1,810 1,350 950	
HEATHCOTE BROOK At Delaware & Raritan Canal viaduct Upstream of confluence	9.52	1,611	2,666	3,286	5,065	
of Carters Brook Upstream of confluence of Heathcote Brook Branch	5.98 3.15	1,141 751	1,931 1,316	2,391 1,636	3,705 2,550	
Upstream of confluence of Switzgable Brook At a point just east of the	1.39	270	455	595	915	
intersection of U.S. Route 1 and New Road	0.75	250	375	450	610	
HEATHCOTE BROOK BRANCH At confluence with Heathcote Brook	1.40	355	595	745	1,280	
IRELAND BROOK At confluence with Lawrence Brook At Fresh Ponds Road Upstream of Fresh Ponds	6.3 5.4	450 440	750 720	920 890	1,300 1,290	
Road	4.5	425	700	870	1,250	

FLOODING SOURCE	DRAINAGE AREA		PEAK DISC	HARGES (cfs)	
AND LOCATION	(sq. miles)	10-PERCENT	<u>2-PERCENT</u>	<u>1-PERCENT</u>	0.2-PERCENT
IRELAND BROOK (continued) At the South Brunswick- East Brunswick corporate					
Limits Downstream of limit of	3.4	400	680	830	1,200
detailed study	1.4	355	585	730	1,050
IRESICK BROOK At mouth Upstream of confluence with	3.4	290	485	595	910
first tributary above Duhernal Lake	2.5	220	370	455	700
LAWRENCE BROOK At confluence with					
Raritan River At New Brunswick-North	44.0	2,405	4,385	5,590	9,360
Brunswick corporate limit Downstream of confluence with Sawmill	42.5	2,385	4,350	5,545	9,280
Brook No. 1 Upstream of confluence	40.7	2,310	4,220	5,375	9,000
with Sawmill Brook No. 1 Downstream of	36.9	2,200	4,020	5,120	8,570
confluence with Bog Brook Upstream of confluence	35.6	2,160	3,945	5,025	8,410
with Bog Brook Downstream of confluence with Sucker	34.2	2,120	3,870	4,925	8,250
Brook Upstream of confluence	34.0	2,110	3,855	4,910	8,220
with Sucker Brook	32.6	2,065	3,775	4,805	8,050
At Farrington Dam Downstream of	32.3	2,060	3,760	4,790	8,020
confluence with Beaverdam Brook Upstream of confluence	30.8	2,010	3,670	4,675	7,830
with Beaverdam Brook Downstream of	28.7	1,940	3,545	4,515	7,555
confluence with Mae Brook Upstream of confluence	28.0	1,915	3,495	4,455	7,455
with Mae Brook	26.1	1,850	3,375	4,300	7,205

	DRAINAGE				
FLOODING SOURCE	AREA PEAK DISCHARGES (cfs)				
AND LOCATION	(sq. miles)	10-PERCENT	2-PERCENT	1-PERCENT	0.2-PERCENT
LAWRENCE BROOK (continued) Downstream of confluence with Ireland					
Brook Upstream of confluence	26.0	1,845	3,370	4,295	7,190
with Ireland Brook At the North Brunswick- South Brunswick corporate	19.8	1,610	2,940	3,750	6,275
limit Upstream of confluence	19.2	1,590	2,900	3,695	6,185
of Oakeys Brook	17.50	1,144	1,934	2,414	3,825
Upstream of U.S. Route 130	15.57	1,104	1,864	2,334	3,705
Upstream of Deans-Rhode	10.07	1,101	1,001	2,001	5,705
Hall Road	14.40	1,044	1,764	2,214	3,495
Upstream of confluence					
of Great Ditch	4.95	514	844	1,064	1,685
Upstream of Major Road Upstream of railroad	3.59	414	654	824	1,265
tracks	2.48	290	340	350	450
MAE BROOK At confluence with Lawrence Brook Downstream of Route 130 Approximately 70 feet downstream from Adams Station Lano	1.96 1.36 0.25	375 270 120	625 455 225	775 570 295	1,250 840 370
Station Lane MANALAPAN BROOK	0.25	120	225	295	370
Upstream of confluence of Matchaponix Brook Downstream of confluence of Cedar Brook	43.98	1,165	1,905	2,310	3,515
No. 3 Upstream of confluence	43.87	1,160	1,900	2,305	3,510
of Cedar Brook No. 3 At Spotswood-Monroe	40.56	1,120	1,825	2,215	3,375
corporate limits	40.5	1,120	1,830	2,210	3,370
Upstream of Daniel Road	39.0	1,120	1,830	2,170	3,310
At Spotswood-Helmetta- Monroe corporate limits	38.79	1,090	1,785	2,165	3,296
Upstream of confluence of Tributary No. 4 Upstream of confluence	38.2	1,080	1,770	2,150	3,270
of Sawmill Brook No. 2	33.2	1,010	1,650	2,010	3,050

FLOODING SOURCE	DRAINAGE AREA		PEAK DISC	HARGES (cfs)	
AND LOCATION	(sq. miles)	10-PERCENT	2-PERCENT	<u>1-PERCENT</u>	0.2-PERCENT
MANALAPAN BROOK (continued) Upstream of confluence					
of Tributary to Manalapan					
Brook	32.1	990	1,630	1,970	3,000
At the Monroe-Jamesburg					
corporate limits	30.5	990	1,630	1,970	3,000
Upstream of confluence			<i>,</i>	,	,
of Wigwam Brook	28.4	930	1,530	1,850	2,820
Upstream of railroad	27.1	915	1,495	1,810	2,760
Upstream of School House					
Road	26.1	895	1,465	1,775	2,710
Upstream of Hoffman Street					
Road	24.7	870	1,430	1,730	2,630
Upstream of confluence					
of Tributary No. 16	23.7	850	1,400	1,690	2,580
At county boundary	17.3	730	1,195	1,450	2,205
5 5			,	,	,
MATAWAN CREEK					
At USGS Gaging Station at					
Lake Lefferts Dam	6.11	1,080	2,030	2,590	4,410
At New Brunswick Road	4.18	830	1,555	1,990	3,380
			,	,	
MATCHAPONIX BROOK At confluence with South					
River	44.0	1,950	3,090	3,640	5,170
Upstream of Old Texas Road	42.2	1,910	3,020	3,560	5,060
Upstream of confluence of	12.2	1,910	5,020	5,500	5,000
Barclay Brook	35.8	1,760	2,790	3,280	4,660
Upstream of confluence of	55.0	1,700	2,190	5,200	1,000
Tributary No. 2	32.7	1,680	2,660	3,140	4,460
Upstream of confluence of	52.7	1,000	2,000	5,110	1,100
Tributary No. 3	30.3	1,620	2,560	3,020	4,260
Upstream of Old Bridge-	50.5	1,020	2,000	5,020	1,200
Englishtown Road	29.8	1,600	2,540	2,990	4,250
Upstream of Union Hill Road	29.0	1,580	2,510	2,950	4,190
At county boundary	28.4	1,570	2,480	2,930	4,150
At county soundary	20.1	1,570	2,100	2,950	1,150
MILE RUN					
At Raritan River	5.72	1,210	1,850	2,215	3,000
At Hamilton Avenue	4.18	880	1,370	1,645	2,250
Downstream Tributary to	1.10	000	1,070	1,010	2,200
Mile Run	3.00	645	1,015	1,225	1,660
At Livingston Avenue	1.02	325	520	630	880
At Georges Road	0.27	240	455	560	685
11 Stor Beb 11044	<i>√.∠1</i>	210		200	000

FLOODING SOURCE	DRAINAGE AREA	AREA PEAK DISCHARGES (cfs)			
AND LOCATION	(sq. miles)	<u>10-PERCENT</u>	<u>2-PERCENT</u>	<u>1-PERCENT</u>	0.2-PERCENT
MILL BROOK NO. 1 At confluence with Raritan River Upstream of confluence with	2.5	654	1,025	1,236	1,799
West Branch Mill Brook No. 1 Upstream of confluence with	1.47	414	658	798	1,174
Boundary Branch Mill Brook No. 1	0.63	189	309	378	566
MILL BROOK NO. 2 At the railroad bridge Upstream of the confluence of Bonhamtown Brook	3.1 1.5	670 615	1,060 940	1,290 1,120	1,910 1,640
of Bolinantown Brook	1.5	015	740	1,120	1,040
MILLSTONE RIVER At county boundary At South Brunswick-	170.0	7,330	11,355	13,545	19,420
Plainsboro corporate limits Above confluence of	157.8	6,925	10,725	12,800	18,350
Stony Brook Above confluence of	99.0	4,885	7,570	9,030	12,950
Little Bear Brook	81.8	4,230	6,555	7,820	11,215
Above confluence of Big Bear Brook	65.8	3,600	5,575	6,650	9,535
Above confluence of Cranberry Brook	42.7	2,600	4,025	4,800	6,885
At Plainsboro-Cranbury corporate limits Upstream of confluence of	39.3	2,445	3,785	4,515	6,475
Rocky Brook At Cranbury-Monroe	20.9	1,525	2,360	2,815	4,035
corporate limits Upstream of confluence	16.55	1,280	1,985	2,365	3,395
of Bentley's Brook At county boundary	9.75 7.47	860 705	1,335 1,095	1,590 1,305	2,280 1,870
OAKEYS BROOK At confluence with	7 7	105	1,000	1,505	1,070
Lawrence Brook Upstream of Diversion	5.2	725	1,200	1,490	2,100
Channel	3.4	510	850	1,060	1,500
At U.S. Route 1	1.5	265	455	570	860
At Mid Point	0.86	190	335	425	640
At Kroy Road	0.55	145	260	325	640
At Henderson Road	0.35	115	205	265	420

FLOODING SOURCE	DRAINAGE AREA					
AND LOCATION	(sq. miles)	<u>10-PERCENT</u>	<u>2-PERCENT</u>	<u>1-PERCENT</u>	0.2-PERCENT	
PARKWAY BRANCH At the mouth	1.3	340	560	690	1,050	
PUMPKIN PATCH BROOK At county boundary At Inwood Avenue	1.8 0.9	440 264	710 430	870 530	1,300 800	
RAHWAY RIVER Downstream of confluence of South Branch Rahway River	77.4	4,874	8,175	9,932	14,984	
RARITAN RIVER At the Sayreville-South Amboy corporate limits At Washington Canal At downstream East Brunswick-Edison - Sayreville corporate	1,09 3 .0 1,072.0	43,600 42,820	54,170 53,210	62,090 60,990	80,950 79,160	
limits (confluence of the South River) Downstream of Lawrence Brook Upstream of Lawrence Brook Upstream of Mile Run Downstream of Mile Run Upstream of Queens Bridge	939.7 932.5 888.5 880.0 878.9 785.0	38,540 38,300 36,850 36,600 36,530 33,000	47,890 47,590 45,780 45,100 45,390 41,000	54,890 54,560 52,480 52,100 52,030 47,000	71,240 70,800 68,120 67,600 67,530 61,000	
ROBINSONS BRANCH Downstream of confluence of Robinsons Branch Tributary At Inman Avenue At Tingley Road	4.0 2.8 1.5	560 330 190	930 550 320	1,130 660 390	1,730 1,020 600	
ROBINSONS BRANCH TRIBUTARY At Inman Avenue At the 84-inch diameter culvert	0.7 0.3	95 50	165 85	200 100	310 155	
SAWMILL BROOK NO. 1 ¹ At confluence with Lawrence Brook Downstream of Cranberry Road	3.9 0.4	370 185	550 345	650 445	895 555	

¹Discharge values reduced downstream of restrictive railroad culvert

FLOODING SOURCE	DRAINAGE AREA	PEAK DISCHARGES (cfs)						
AND LOCATION	(sq. miles)	10-PERCENT	<u>2-PERCENT</u>	<u>1-PERCENT</u>	0.2-PERCENT			
SAWMILL BROOK NO. 2 At confluence with Manalapan Brook	4.85	255	430	550	815			
Upstream of confluence of Tributary to Sawmill Brook At upstream Helmetta	1.09	65	95	130	190			
corporate limits	0.74	55	85	105	150			
SHALLOW BROOK At confluence with Devils Brook	6.0	390	665	830	1,340			
At Plainsboro-South Brunswick corporate limits	4.9	340	585	735	1,185			
At Mid Point At U.S. Route 130	2.10	310	535	670 595	1,090			
At the South Brunswick-	1.63	275	470	393	970			
Monroe corporate limits At New Jersey Turnpike	0.75 0.43	220 125	365 185	450 220	730 300			
SIXMILE RUN At County Boundary Downstream of Hidden Lake	3.0	320	540	665	980			
Drive Downstream of Cozzens	2.0	250	420	520	745			
Lane	1.8	220	375	465	670			
At limit of detailed study	0.6	110	205	260	315			
SIX MILE RUN BRANCH At State Route 27 Upstream of the confluence	0.92	330	480	575	760			
of Tributary to Six Mile Run Branch At Stillwell Road At a point approximately	0.37 0.27	165 140	245 205	290 245	390 330			
1,200 feet upstream of Stillwell Road	0.16	100	155	180	245			

FLOODING SOURCE	DRAINAGE AREA	PEAK DISCHARGES (cfs)						
AND LOCATION	(sq. miles)	10-PERCENT	2-PERCENT	1-PERCENT	0.2-PERCENT			
SOUTH BRANCH RAHWA Y RIVER								
At the County Boundary	10.2	1,450	2,250	2,700	3,970			
At Gills Lane	5.8	920	1,450	1,760	2,600			
At upstream of confluence with Parkway Branch	4.2	690	1,100	1,330	1,980			
Upstream of confluence								
with Coppermine Brook	2.3	240	400	490	730			
SOUTH RIVER At confluence with								
Raritan River	132.3	3,905	6,010	7,050	9,650			
Upstream of Washington		,	,	,	,			
Ċanal	130.0	3,875	5,965	6,995	9,580			
Downstream of								
confluence of Tennents								
Brook	125.0	3,785	5,830	6,835	9,360			
Upstream of confluence								
of Tennents Brook	114.0	3,615	5,575	6,540	8,955			
Upstream of confluence								
of Deep Run	97.0	3,345	5,145	6,035	8,265			
Downstream of								
Duhernal Dam	94.6	3,310	5,090	5,975	8,175			
At confluence of								
Matchaponix Brook	88.0	3,185	4,900	5,750	7,870			
SPA SPRING CREEK At confluence with								
Woodbridge River	1.1	520	720	820	1,100			
At Convery Boulevard	0.6	330	460	520	680			
STREAM 14-14-2-2 At confluence with Bound Brook	1.28	251	414	510	850			
Dound Drook	1.20	231	717	510	050			
STREAM 14-14-2-3 At confluence with Bound Brook	1.84	420	670	810	1,200			

FLOODING SOURCE	DRAINAGE AREA		PEAK DISC	HARGES (cfs)	
AND LOCATION	<u>(sq. miles)</u>	10-PERCENT	<u>2-PERCENT</u>	<u>1-PERCENT</u>	0.2-PERCENT
SUCKER BROOK At confluence with					
Lawrence Brook	1.40	360	580	720	1,100
At powerline crossing	1.27	340	560	680	1,050
Downstream of					
confluence with Tributary					
to Sucker Brook	1.12	320	520	645	950
Upstream of confluence					
with Tributary No. 1 to	0.50	295	425	520	(())
Sucker Brook	0.59 0.37	285 270	435 390	520 475	660 605
At limit of detailed study	0.37	270	390	4/3	003
SWITZGABLE BROOK					
At confluence with Heathcote Brook	0.34	311	566	696	1,030
Heathcole Blook	0.54	511	300	090	1,030
TEN MILE RUN					
At State Route 27	1.54	350	585	715	1,105
Upstream of confluence					
of Tributary No. 2 to Ten					
Mile Run	0.65	225	415	520	790
At Hastings Road	0.13	60	100	130	195
TENNENTS BROOK					
At Sayreville-Old Bridge					
corporate limits	9.6	475	775	940	1,410
At upstream limits of					
Tennents Pond	6.1	385	635	775	1,165
TRIBUTARY A TO					
LAWRENCE BROOK	0.59	210	240	250	220
At New Road	0.58	210	240	250	320
TRIBUTARY NO. 1 TO SUCKER BROOK					
At confluence with					
Sucker Brook	0.52	170	310	400	510
At limit of detailed study	0.46	150	280	360	460
TRIBUTARY NO. 1 TO TEN MILE RUN					
At confluence with Ten					
Mile Run	0.65	200	290	350	470
At Mid Point	0.46	160	240	290	400
At Allstone Road	0.34	155	230	275	380

FLOODING SOURCE	DRAINAGE AREA		PEAK DISC	HARGES (cfs)	
AND LOCATION	(sq. miles)	10-PERCENT	2-PERCENT	1-PERCENT	0.2-PERCENT
TRIBUTARY NO. 2 TO TEN MILE RUN At confluence with Ten					
Mile Run	0.26	135	200	240	325
At Leahy Road At a point approximately 167 feet upstream of Rumson	0.17	110	165	195	265
Road	0.07	50	75	85	110
TRIBUTARY TO CARTERS BROOK At confluence with					
Carters Brook	0.53	130	195	235	320
At State Route 27	0.44	125	190	225	305
TRIBUTARY TO CEDAR BROOK NO. 3 At confluence of Cedar					
Brook No. 3	0.23	120	210	280	350
At midpoint At upstream Spotswood-East	0.10	70	130	165	205
Brunswick corporate limits	0.07	50	95	125	155
TRIBUTARY TO CRANBURY BROOK At confluence with Cranbury Brook	2.08	275	475	595	965
At Union Valley-Gravel Hill	0.87	250	295	4.4.5	590
Road TRIBUTARY TO HEATHCOTE BROOK At confluence with Heathcote Brook At State Route 27	0.63 0.48	250 175 160	385 270 245	445 325 290	580 450 395
TRIBUTARY TO LAWRENCE BROOK At confluence of	0.72	215	205	200	510
Lawrence Brook Upstream of an unnamed	0.53	215	325	380	510
tributary	0.14	60	90	105	140
TRIBUTARY TO MANALAPAN BROOK At confluence with					
Manalapan Brook	0.32	85	130	160	225

FLOODING SOURCE	DRAINAGE AREA		PEAK DISC	HARGES (cfs)	
AND LOCATION	(sq. miles)	10-PERCENT	<u>2-PERCENT</u>	<u>1-PERCENT</u>	0.2-PERCENT
TRIBUTARY TO MILE RUN At confluence of Mile Run At Route 91 – Jersey Avenue At Somerset Street	1.98 1.48 0.43	440 370 260	700 595 475	850 725 610	1,160 1,010 760
TRIBUTARY TO MILLSTONE RIVER At confluence with Millstone	0.5	05	145	170	220
River At a point 3,447 feet	0.5	95	145	170	230
upstream of mouth	0.3	75	115	135	180
TRIBUTARY TO OAKEYS BROOK At confluence with					
Oakeys Brook	1.12	240	405	520	810
At Black Horse Lane	0.99	230	400	520	800
At U.S. Route 1	0.80	225	400	510	780
At Henderson Road At a point approximately 6,000 feet upstream of its confluence with Oakeys	0.66	205	360	470	720
Brook	0.34	115	205	255	390
TRIBUTARY TO SAWMILL BROOK NO. 2 At confluence with Sawmill Brook No. 2	3.62	295	440	540	840
TRIBUTARY TO SIX MILE RUN BRANCH At confluence with Six Mile Run Branch	0.32	160	240	280	375
At Sand Hills Road	0.22	125	185	215	285
At limit of detailed study	0.10	75	110	130	175
WEST BRANCH MILL BROOK NO. 1 At confluence with Mill Brook No. 1	0.95	292	470	572	848
WIGWAM BROOK At confluence with		2.50	- 10		1 077
Manalapan Brook At the Monroe-Jamesburg	1.36	350	540	675	1,075
corporate limits	0.72	190	340	425	610

FLOODING SOURCE	DRAINAGE AREA <u>(sq. miles)</u>	10-PERCENT	PEAK DISCI <u>2-PERCENT</u>	HARGES (cfs) <u>1-PERCENT</u>	0.2-PERCENT
WIGWAM BROOK (continued) At a point approximately 3,700 feet upstream of Monroe-Jamesburg corporate limits	0.30	105	190	240	385
WOODBRIDGE RIVER At confluence with					
Arthur Kill Upstream of confluence	9.9	2,120	2,590	2,740	2,850
of Spa Spring Creek Upstream of confluence	8.0	1,780	2,180	2,310	2,400
of Heards Brook Upstream of confluence	4.6	1,370	1,670	1,770	1,840
of Wedgewood Brook At Omar Avenue	2.7 0.6	990 380	1,210 470	1,280 500	1,330 520

3.2 Hydraulic Analyses

Analyses of the hydraulic characteristics of flooding from the source studied were carried out to provide estimates of the elevations of floods of the selected recurrence intervals. Users should be aware that flood elevations shown on the FIRM represent rounded whole-foot elevations and may not exactly reflect the elevations shown on the Flood Profiles or in the Floodway Data tables in the FIS report. For construction and/or floodplain management purposes, users are encouraged to use the flood elevation data presented in this FIS in conjunction with the data shown on the FIRM.

Cross sections were determined from topographic maps and field surveys. All bridges, dams, and culverts were field surveyed to obtain elevation data and structural geometry. All topographic mapping used to determine cross sections is referenced in Section 4.1.

Locations of selected cross sections used in the hydraulic analyses are shown on the Flood Profiles (Exhibit 1). For stream segments for which a floodway was computed (Section 4.2), selected cross section locations are also shown on the FIRM (Exhibit 2).

Precountywide Analyses

Each incorporated community within Middlesex County has a previously printed FIS report. The hydraulic analyses described in those reports have been compiled and are summarized below.

The rivers in the Township of North Brunswick are part of the Raritan River Basin system. To ensure consistency, a continuous backwater analysis starting at the mouth of the Raritan River was performed. The Township of North Brunswick is contained within the scope of this analysis which encompasses seven communities in the immediate area. Riverine flood elevations for the 10- through 0.2-percent annual chance flood events were calculated using a tide elevation of 4.6 feet North American Vertical Datum (NAVD) as a starting condition at the mouth of the Raritan River. The calculated Raritan River flood elevations for the junction with Lawrence Brook were used as starting water-surface elevations for the backwater analysis of Lawrence Brook. Similarly, the backwater analyses of Tributary No. 1 to Sucker Brook, Oakeys Brook, Six Mile Run, Mile Run, and Diversion Channel were conducted in the same manner. Starting water-surface elevations for Mae Brook were performed using the slope/area method.

Along the detailed study reach of the streams, an analysis of hydraulic characteristics was conducted to establish flood elevations for the selected recurrence intervals. Cross sections for the backwater analysis were taken at appropriate locations to compute the significance of natural and manmade obstructions upon flood flows. The valley portion of these was obtained photogrammetrically, while the below water portion was determined by actual field surveys conducted by GEOD Aerial Mapping, Inc. (GEOD Aerial, 1976). Where possible, bridge and dam plans were utilized, and where plans were not available, all significant hydraulic features of structures were measured in the field.

Using this cross-sectional data in the USACE HEC-2 backwater computer program enabled the computation of water-surface elevations for floods of the selected recurrence intervals (USACE, 1973). Where possible, computed water-surface elevations were compared with recorded gage data and were also in agreement to a tolerance of 0.5 foot (U.S. Department of the Interior, 1976).

In the Township of North Brunswick, the approximate 1-percent annual chance flooding for the Hidden Lake area was developed by interpolation of depths from curves contained in Water Resources Circular No. 14 which depict depths of flooding as a function of the mean annual flood for coastal and non-coastal plains in the State of New Jersey (New Jersey, Department of Conservation and Economic Development and the Division of Water Policy and Supply, 1964). These depths were translated to the mapping with the final delineation being tempered with regard to past flood history and on-site examinations.

In the Township of Cranbury, overbank cross sections for the streams studied in detail were obtained from aerial photographs (Quinn and Associates, 1976). The below-water sections were obtained by field measurement.

In the Township of Edison, cross sections were located above and below bridges, at control locations along the stream lengths, and at significant changes in ground relief, land use, and land cover. Stream channel sections were field surveyed and combined with available topographic data on the overbanks. All bridges and culverts were field surveyed to obtain elevation data and structural geometry.

The HEC-2 computer program and hand calculations were used to determine the hydraulic operation of the diversion tunnels on Bonhamtown Brook along Bernards Street and Dorothy Avenue. The HEC-2 model for the Raritan River is based on Flood Hazard Report No. 2 for the Raritan River (New Jersey Department of Environmental Protection, 1982).

In the Township of Edison, cross-section data were obtained from topographic maps compiled from aerial photographs (Quinn & Associates, 1976); below-water sections were obtained by field measurement. Cross sections were located at close intervals above and below bridges and culverts in order to compute the significant backwater effects of these structures in the urbanized areas.

In the Township of East Brunswick, cross sections for the backwater analyses were taken at appropriate locations to compute the significance of natural and manmade obstructions on flood flows. The valley portion of the cross sections was obtained photogrammetrically, while the below-water portion was determined by field surveys (GEOD Aerial, 1976). Where possible, bridge and dam plans were utilized; where plans were not available, all significant hydraulic features of structures were field measured. On undeveloped reaches, or on long reaches between structures, cross sections were located at regular intervals and at changes in valley configuration. At structures, to determine their ability to pass flood flows, cross sections were taken at close intervals upstream and downstream of structures and used in conjunction with their significant hydraulic structures.

In the Township of Plainsboro, overbank cross-section data were obtained from topographic maps compiled from aerial photographs (A.D.R., 1973; Quinn and Associates, 1976).

In the Township of Piscataway, cross sections for the backwater analyses of the Raritan River, Ambrose Brook, Doty's Brook, and Bonygutt Brook were field surveyed and located at close intervals above and below bridges and culverts in order to compute the significant backwater effects of these structures. Cross sections for the backwater analyses of Bound Brook were provided by the NJDEP, Division of Water Resources, as used in their Raritan River Flood Hazard Report No. 15 (Anderson-Nichols and Company, 1973). The information was field checked to insure accuracy and updated where necessary.

In the Borough of Metuchen, channel cross sections and partial overbank cross sections were obtained through field surveys. The overbanks were extended using topographic maps as prepared by Geod Corporation from an aerial survey (Geod

Corporation, 1976). All bridges and culverts were surveyed to obtain elevation data and structural geometry.

In the Borough of Metuchen, starting conditions for Dismal Brook and Bonhamtown Brook studied in detail were determined by slope-energy methods.

In the Borough of South Plainfield, cross-section information from Flood Hazard Report No. 15 (New Jersey Department of Environmental Protection, 1974) was used for Bound Brook and for the lower portion of Cedar Brook No. 2 to Kenyon Avenue.

For the remaining streams, channel cross sections and partial overbank cross sections were obtained through field surveys. The overbanks were extended using the NJDEP topographic maps, dated April 26, 1971 (New Jersey Department of Environmental Protection, 1971).

In the Borough of South River, cross sections for the backwater analysis of the South River were taken at appropriate locations to compute the significant effects of natural and manmade obstructions on flood flows. The valley portion of these cross sections was obtained photogrammetrically (A. O. Quinn Associates, 1968; GEOD Aerial, 1976). The below-water portion was determined by field surveys (GEOD Aerial, 1976). Where possible, bridge and dam plans were utilized; where plans were not available, all significant hydraulic features of structures were measured in the field.

In either undeveloped segments or long segments between structures, cross sections were located at regular intervals and at changes in valley configuration. To determine the ability of structures to pass flood flows, cross sections were taken at close intervals upstream and downstream and used in conjunction with the significant hydraulic features of the structures.

In the Borough of Middlesex, cross sections for the backwater analyses of the Raritan River were developed by the USACE from Flood Hazard Report No. 2 for the river (New Jersey Department of Environmental Protection, 1972). Bridge opening geometry and underwater cross sections were obtained from the Works Progress Administration (Works Progress Administration, 1937). For Green Brook and Bound Brook, cross sections were developed using the <u>Supplemental Flood Hazard Report X</u> (New Jersey Department of Environmental Protection, unpublished). For Ambrose Brook and Bonygutt Brook, cross sections and bridge opening geometry were field surveyed to obtain elevation data.

In the Borough of Helmetta, overbank cross-section data for the streams studied by detailed methods were obtained from topographic maps compiled from aerial photographs (Quinn and Associates of Horsham, 1976).

In the Borough of Milltown, cross sections for the backwater analysis were taken at appropriate locations to compute the significance of natural and manmade obstructions upon flood flows. The valley portion of these was obtained photogrammetrically, while the below-water portion was determined by field surveys (GEOD Aerial, 1976).

In the Borough of Milltown, in undeveloped reaches, or on long reaches between structures, cross sections were located at regular intervals and at changes in valley configuration. At structures, to determine their ability to pass flood flows, cross sections were taken at close intervals up and downstream and used in conjunction with the significant hydraulic features of the structure.

In the Borough of Milltown, at some locations along study streams, hydraulic conditions may create a situation of supercritical flow. Because of the inherent instability of such a condition, an assumption of critical flow has been adopted for the backwater analyses of this study.

In the City of Perth Amboy, cross-section data and structural geometry were obtained from the channel improvements study developed by Killam Associates (Killam Associates, 1974). Cross-section data and structural geometry for Spa Spring Creek were determined using field survey.

In the Township of Woodbridge, cross-section data and bridge and culvert geometry for the Rahway River and the South Branch Rahway River were field surveyed by the USACE for their studies in the basin (USACE, 1973). The cross-section data and structure geometry for the Woodbridge River were obtained from the channel improvements study developed by Killam Associates (Killam Associates, 1974). Cross-section data from the mouth of Heards Brook upstream to Gorham Avenue was also obtained from channel improvement plans (Killam Associates, 1976). Cross-section and structure data for Heards Brook upstream from Gorham Avenue upstream, and for Parkway Branch, Pumpkin Patch Brook, and Spa Spring were field surveyed by Richard Browne Associates for this study.

In the Borough of Spotswood, field surveys were conducted by Lynch, Carmody, Guiliano, & Karol, P.A.

In the Township of Old Bridge, channel cross sections and partial overbank cross sections for the streams studied by detailed methods were obtained through field surveys. The overbanks were extended using topographic maps compiled from aerial photographs (Topographic Data Consultants, 1980; New Jersey Department of Environmental Protection, Middlesex County, no date; County of Middlesex, no date). For Matawan Creek, water-surface elevations of floods of the selected recurrence intervals were computed through use of the COE HEC-2 step-backwater computer program.

In the Township of Cranbury, water-surface elevations for the streams studied by detailed methods were computed through use of the USACE HEC-2 step-backwater computer program (USACE, 1973). Starting water-surface elevations for Cranbury Brook and Tributary to Millstone River in the Township of Cranbury were taken from the computed elevations of the Millstone River at these streams' confluences.

Starting water-surface elevations for Cedar Brook were taken from the computed elevations on Cranbury Brook at the confluence of Cedar Brook.

In the Township of Edison, starting water-surface elevations for Mill Brook were obtained from the previous FIS for Edison (FEMA, 1982). Starting water-surface elevations for Dismal Brook, Robinsons Branch Tributary, and Bonhamtown Brook in the Township of Edison, were based on coincidental flood heights on the receiving main streams.

The Robinsons Branch model was calibrated to measured high-water marks from the August 1971 storm.

Starting water-surface elevations for Bentley's Brook in the Township of Monroe were determined assuming coincident peaks at its confluence with the Millstone River. Starting water-surface elevations for Barclay's Brook and Wigwam Brook were determined assuming coincident peaks at their respective confluence with Manalapan Brook. Starting water-surface elevations for Tributary to Cranbury Brook and Clear Brook were determined assuming coincident peaks at their respective confluence with Cranbury Brook. Starting water-surface elevations for Tributary to Cranbury Brook and Clear Brook were determined assuming coincident peaks at their respective confluence with Cranbury Brook. Starting water-surface elevations for Tributary to Manalapan Brook were determined using critical depth calculations.

For the streams studied by approximate methods, the extent of the 1-percent annual chance flood was determined using depth-discharge-frequency relations for coastal and non-coastal floodplain sites in New Jersey.

In the Township of East Brunswick, where possible, computed water-surface elevations were compared with recorded gage data and were also in agreement to a tolerance of 0.5 foot (U.S. Department of the Interior, 1976).

The May 3, 1990, FIS for the Township of East Brunswick was based on a revised HEC-2 analysis for Cedar Brook No. 3. All hydraulic input data used in the revised model are consistent with the 1982 FIS.

The streams in the study area are part of the Raritan River basin and, to ensure consistency, a continuous backwater analysis starting at the mouth of the Raritan River was performed. The Township of East Brunswick is contained within the scope of this analysis, which encompasses seven communities in the immediate area. Riverine elevations for the 10-, 2-, 1-, and 0.2-percent annual chance floods were calculated using a tidal elevation of 5.7 feet as a starting condition at the mouth of the Raritan River. The calculated Raritan River elevations at the junctions were used as the starting water-surface elevations for the backwater analyses of the South River and Lawrence Brook. Similarly, the backwater conducted in the same manner, with the exception of Big Brook.

In the Township of East Brunswick, due to the large differences in drainage area between Lawrence Brook and Bog Brook, a probability analysis was performed which showed that these streams would not peak concurrently. For Bog Brook, in the vicinity of its confluence, a series of backwater calculations was conducted using conditions that would be less severe than those resulting from assuming concurrent peaks. For each frequency flood, two starting combinations were examined. One is based on the respective tributary flow in combination with a moderate main stem water-surface elevation, and a second is based on a moderate tributary flow in combination with the respective main stem water-surface elevation. For example, a 1-percent annual chance discharge for Bog Brook was used in combination with a 10-percent annual chance flood elevation on Lawrence Brook as a starting water surface and vice versa. These combinations produced an envelope of curves for each frequency flood. Within this envelope area, the higher water surfaces are considered reasonable for flooding conditions of the given frequency and are presented on the profiles.

Since the Washington Canal carries the majority of the South River flow through the swamp area encompassing it, the backwater analysis of the South River was routed through the Washington Canal upstream to its confluence with the South River. Thus, the model bypasses the downstream segment of the South River.

Starting water-surface elevations for the Millstone River were obtained from the FIS for the Township of South Brunswick (FEMA, 1985). Starting water-surface elevations for Devils Brook, Shallow Brook, Bee Brook, Cranbury Brook, and Cedar Brook No. 1 in the Township of Plainsboro were calculated by coincident peak flow assumptions from their respective main stems.

In the Township of Plainsboro, for the streams studied by approximate methods, the extent of the 1-percent annual chance flood was determined using depth-discharge-frequency relationships for coastal and non-coastal plain sites in New Jersey (New Jersey Department of Environmental Protection, 1974).

In the Township of South Brunswick, starting water-surface elevations for Lawrence Brook and the Millstone River were obtained from the FISs for the Townships of East Brunswick and Franklin, respectively (FEMA, 1981, 1979). Starting water-surface elevations for Six Mile Run Branch and Ten Mile Run were determined by normal depth calculations. Starting water-surface elevations for the Tributary to Carters Brook, Carters Brook, Heathcote Brook Branch, Tributary to Six Mile Run Branch, Six Mile Run Branch, Cow Yard Brook, Tributary to Oakeys Brook, Great Ditch, Tributary to Lawrence Brook, Switzgable Brook, Heathcote Brook studied by detailed methods were determined assuming coincident peak flows.

Starting water-surface elevations on the Millstone River were taken from the FIS for the Borough of Manville (U.S. Department of Housing and Urban Development, 1978).

In the Township of Piscataway, starting water-surface elevations for Bound Brook and Bonygutt Brook were determined by analysis of rating curves developed by McPhee, Smith and Rosenstein, engineers who performed a basin-wide study of the area. Starting water-surface elevations for the 10- and 1-percent annual chance floods for Ambrose and Doty's Brooks were obtained from a study by T & M Associates (T & M Associates, 1981). The 2- and 0.2-percent annual chance starting water-surface elevations for Ambrose and Doty's Brooks were determined by extrapolating the 10- and 1-percent annual chance water-surface elevations.

In the Borough of South Plainfield, for Stream 14-14-2-2, starting water-surface elevations were determined by using the New Brunswick Avenue bridge as the control structure. Stream 14-14-2-3 and Cedar Brook in the Borough of South Plainfield are all tributaries to Bound Brook; thus, the starting water-surface elevations were taken from the Bound Brook profile.

In the Borough of Dunellen, water-surface elevations obtained from the FISs for the Borough of Middlesex and the Township of Green Brook were used where Bonygutt Brook forms the corporate limits between these communities and the Borough of Dunellen (U.S. Department of Housing and Urban Development, 1976; FEMA, 1988). For areas of Bonygutt Brook that were not studied in the Middlesex and Green Brook studies, backwater computations using standard NRCS computer programs were used to determine water-surface profiles (U.S. Department of Agriculture, 1972). Bernoulli's Theorem was applied to the total energy head at each cross section, and Manning's formula was used to determine friction losses between cross sections. At road and railroad crossing structures, water-surface computations were made for open channel flow, pressure flow, and weir flow, or a combination of those.

Starting water-surface elevations for Green Brook were obtained from the FIS for the Township of Green Brook (FEMA, 1988).

In the Borough of Middlesex, water-surface elevations of floods of the selected recurrence intervals for the Raritan River were computed using the USGS E-431 step-backwater computer program (U.S. Department of the Interior, 1974).

In the Borough of Middlesex, starting water-surface elevations for Green Brook were determined assuming coincident peaks at its confluence with the Raritan River. Starting water-surface elevations for Bound Brook were determined assuming coincident peaks at its confluence with Green Brook. Starting water-surface elevations for Ambrose Brook and Bonygutt Brook were determined using normal depth calculations.

In the Borough of Helmetta, starting water-surface elevations for Sawmill Brook No. 2 and Tributary to Sawmill Brook No. 2 were taken at their respective confluence assuming coincident peak flows.

In the Borough of Milltown, the rivers in the study area are part of the Raritan River Basin system, so, to ensure consistency, a continuous backwater analysis starting at the mouth of the Raritan River was performed. The Borough of Milltown is within the scope of this analysis, which encompasses seven communities in the immediate area. Riverine flood elevations for the selected recurrence intervals were calculated using a tide elevation of 4.6 feet NAVD as a starting condition at the mouth of the Raritan River. The calculated Raritan River flood elevations at the confluence with Lawrence Brook were used as the starting water surface for the backwater analysis of Lawrence Brook. The backwater analyses of Bog Brook and Sucker Brook were conducted in the same manner. In the Borough of Milltown, starting elevations for Sawmill Brook were performed using the slope/area method.

In the Borough of Jamesburg, starting water-surface elevations for Manalapan Brook were obtained from the FIS for the Township of Monroe and were coordinated with Flood Hazard Report No. 8 (FEMA, 1987; New Jersey Department of Environmental Protection, 1972).

In the City of New Brunswick, the rivers in the study area are part of the Raritan River Basin system and to ensure consistency, a continuous backwater analysis starting at the mouth of the Raritan River was performed. The City of New Brunswick is contained within the scope of this analysis, which encompasses seven communities in the immediate area. Riverine flood elevations for the 10- through 0.2-percent annual chance flood events were calculated using a tidal elevation of 4.6 feet as a starting condition at the mouth of the Raritan. The calculated Raritan River flood elevations at the junction with Lawrence Brook were used as starting water-surface elevations for the backwater analysis of Lawrence Brook. Similarly, the backwater analysis of the Tributary to Mile Run was conducted in the same manner.

In the Township of Woodbridge, starting water-surface elevations on the Rahway and Woodbridge Rivers were taken from the 10-percent annual chance tide level on Arthur Kill. Normal depth, taken from slope/area calculations, was used for the starting water-surface elevations for Parkway Branch, Spa Spring Creek, and Heards Brook.

The HEC-2 model used for the Rahway River was originally coded in 1974 as part of a Special Flood Hazard Information Report prepared for the New York District of the USACE (USACE, 1975). This model was adjusted in 1976 as part of the comprehensive hydrologic-hydraulic analyses prepared by the USACE Hydrologic Engineering Center (USACE, 1976). Although the coding of the model is deficient in certain areas when compared to current criteria, the hydraulic parameters were adjusted so that the final model duplicated historical field-surveyed flood marks along the entire river.

In order to develop a valid floodway with this model for flood insurance purposes (Section 4.2), certain parameters had to be adjusted so that the model geometry agreed with the mapping used for delineation. Since these adjustments generally did not alter the calibrated water-surface elevations by more than one or two tenths of a foot, it was decided by FEMA that the adjusted model would be used for this study after it was updated to reflect current conditions in the watershed (e.g., bridges that were replaced or washed out since the original model was developed).

New HEC-2 models were developed for Parkway Branch, Pumpkin Patch Brook, the Woodbridge River, Spa Spring, and Heards Brook.

In the Township of Woodbridge, normal depth from slope/area calculations was used as the starting water-surface elevation for Pumpkin Patch Brook (FEMA, September 20, 2006).

Within the City of Rahway, starting water-surface elevations for South Branch Rahway River were obtained from a known water-surface elevation from Arthur Kill (FEMA, September 2006).

In the Borough of Sayreville, starting water-surface elevations for Robinson River, Tennents Brook, and Crossway Creek studied in detail, except for the South River, were calculated using the Raritan Bay tidal elevation of 5.7 feet. Starting watersurface elevations for the South River were taken at its confluence with the Raritan River.

Since the Washington Canal carries the majority of the South River flow through the swamp area encompassing it, the backwater analysis of the South River was routed through the Washington Canal upstream to its confluence with the South River. Thus, the model bypasses the downstream segment of the South River.

In the Borough of Spotswood, the calculated Raritan River flood elevations at the confluence of the South River were used as the starting water-surface elevation for the backwater analysis of the South River. Similarly, concurrent peaks were assumed for the starting conditions for the backwater analysis of the Tributary to Cedar Brook.

In the Township of Old Bridge, for Iresick Brook, the starting water-surface elevations were determined using critical depth over the control structure at Riverdale Road. For Barclay Brook and Deep Run, starting water-surface elevations were determined using the slope/area method.

Countywide Analyses

Water surface elevations of floods of the selected recurrence intervals were computed using the USACE HEC-RAS standard step-backwater computer software (USACE, 2004).

Starting water-surface elevations for the Mill Brook No.1 was obtained from the effective NOAA Tide & Currents data for New Brunswick, NJ, Tide Gage on Raritan River, Station ID 8531463.

Starting water-surface elevations for Boundary Branch Mill Brook No.1, Coppermine Brook, and West Branch Mill Brook No.1 were obtained utilizing the slope/area method.

Starting water-surface elevations for South Branch Rahway River were obtained from the effective Township of Woodbridge FIS.

Flood profiles were drawn showing computed water-surface elevations for floods of the selected recurrence intervals.

The hydraulic analyses for this FIS were based on unobstructed flow. The flood elevations shown on the profiles are thus considered valid only if hydraulic structures remain unobstructed, operate properly, and do not fail.

Roughness factors (Manning's "n") used in the hydraulic computations were chosen by engineering judgment and were based on field observations of the streams and floodplain areas. Roughness factors for all streams studied by detailed methods are shown in Table 8, "Manning's "n" Values."

TABLE 8 - MANNING'S "n" VALUES

Stream	Channel "n"	Overbank "n"
Ambrose Brook	0.013-0.030	0.030-2.00
Barclay Brook	0.020-0.045	0.040-0.150
Barclay's Brook	0.020-0.042	0.090-0.110
Beaverdam Brook	0.030-0.045	0.055-0.110
Bee Brook	0.045	0.100-0.120
Bentley's Brook	0.035	0.070
Bog Brook	0.030-0.045	0.055-0.110
Bonhamtown Brook	0.035	0.050-0.080
Bonygutt Brook	0.024-0.030	0.070-0.080
Bound Brook	0.015-0.045	0.050-0.165
Boundary Branch Mill Brook No. 1	0.012-0.040	0.013-0.100
Carters Brook	0.040-0.060	0.120-0.160
Cedar Brook No. 1	0.020-0.055	0.080-0.140
Cedar Brook No. 2	0.015-0.040	0.050-0.100
Cedar Brook No. 3	0.030-0.045	0.055-0.110
Cheesequake Creek	0.030	0.040-0.065
Clear Brook	0.013-0.040	0.080-0.110
Coppermine Brook	0.026-0.040	0.050-0.090
Cow Yard Brook	0.040	0.120
Cranbury Brook	0.013-0.055	0.08-0.140
Crossway Creek	0.025-0.048	0.035-0.150
Deep Run	0.020-0.045	0.030-0.130
Devils Brook	0.035-0.045	0.090-0.120
Dismal Brook	0.035-0.150	0.015-0.100
Diversion Channel	0.035-0.040	*
Doty's Brook	0.025-0.030	0.035-0.100
Great Ditch	0.040	0.100
Green Brook	0.018-0.050	0.080-0.300

*Data not available

TABLE 8 - MANNING'S "n" VALUES - continued

Stream	Channel "n"	Overbank "n"
Heards Brook	0.015-0.040	0.030-0.080
Heathcote Brook	0.030-0.055	0.090-0.120
Heathcote Brook Branch	0.040	0.120
Ireland Brook	0.030-0.045	0.055-0.110
Iresick Brook	0.020-0.033	0.040-0.120
Lawrence Brook	0.030-0.055	0.060-0.110
Mae Brook	0.035-0.040	0.060-0.100
Manalapan Brook	0.020-0.040	0.080-0.110
Matawan Creek	0.018-0.040	0.060-0.100
Matchaponix Brook	0.040-0.060	0.100-0.200
Mellins Creek	0.030	0.040-0.065
Mile Run	0.035-0.040	0.070-0.100
Mill Brook No. 1	0.012-0.040	0.013-0.100
Mill Brook No. 2	0.035	0.050-0.080
Millstone River	0.030-0.055	0.050-0.110
Oakeys Brook	0.035-0.045	0.070-0.100
Parkway Branch	0.030-0.045	0.080
Pumpkin Patch Brook	0.025-0.040	0.080
Rahway River	0.027-0.035	0.035-0.080
Raritan River	0.030-0.045	0.060-0.100
Robinsons Branch	0.020-0.100	0.080-0.150
Robinsons Branch Tributary	0.035	0.080-0.100
Sawmill Brook No. 1	0.030-0.050	0.055-0.120
Sawmill Brook No. 2	0.020-0.050	0.090-0.120
Shallow Brook	0.020-0.050	0.090-0.120
Sixmile Run	0.035-0.040	0.060-0.100
Six Mile Run Branch	0.045-0.075	0.090-0.140
South Branch Rahway River	0.012-0.045	0.013-0.100
South River	0.030-0.045	0.060-0.100
Spa Spring Creek	0.030	0.040-0.080
Stream 14-14-2-2	0.015-0.040	0.050-0.100
Stream 14-14-2-3	0.015-0.040	0.050-0.100
Sucker Brook	0.035-0.045	0.055-0.100
Switzgable Brook	0.040-0.050	0.090
Ten Mile Run	0.055-0.060	0.130-0.180
Tennents Brook	0.030	0.060
Tributary No. 1 to Sucker Brook	0.035-0.040	0.055-0.100
Tributary No. 1 to Ten Mile Run	0.060-0.065	0.180-0.200
Tributary No. 2 to Ten Mile Run	0.055-0.060	0.160-0.180
Tributary to Carters Brook	0.060	0.140-0.160
Tributary to Cedar Brook No. 3	0.040-0.090	0.040-0.090
Tributary to Cranbury Brook	0.035-0.040	0.100-0.120

TABLE 8 - MANNING'S "n" VALUES - continued

Stream	Channel "n"	Overbank "n"
Tributary to Heathcote Brook	0.030-0.050	0.120
Tributary to Lawrence Brook	0.040	0.120
Tributary to Manalapan Brook	0.030-0.045	0.100-0.120
Tributary to Mile Run	0.040-0.045	0.070-0.100
Tributary to Mill Brook	0.080-0.150	0.015-0.035
Tributary to Millstone River	0.040-0.050	0.09-0.120
Tributary to Oakeys Brook	0.035	0.070
Tributary to Sawmill Brook No. 2	0.020-0.070	0.110-0.120
Tributary to Six Mile Run Branch	0.040-0.060	0.070-0.110
West Branch Mill Brook No. 1	0.012-0.040	0.013-0.100
West Branch Rahway River	0.012-0.040	0.013-0.100
Wigwam Brook	0.015-0.035	0.090-0.120
Woodbridge River	0.025-0.030	0.060-0.100

Locations of selected cross sections used in the hydraulic analyses are shown on the Flood profiles (Exhibit 1). For stream segments for which a floodway was computed (Section 4.2), selected cross sections are also shown on the FIRM (Exhibit 2).

All elevations are referenced to the North American Vertical Datum of 1988 (NAVD 88).

Qualifying bench marks within a given jurisdiction that are cataloged by the National Geodetic Survey (NGS) and entered into the National Spatial Reference System (NSRS) as First or Second Order Vertical and have a vertical stability classification of A, B, or C are shown and labeled on the FIRM with their 6-character NSRS Permanent Identifier.

Bench marks cataloged by the NGS and entered into the NSRS vary widely in vertical stability classification. NSRS vertical stability classifications are as follows:

- Stability A: Monuments of the most reliable nature, expected to hold position/elevation well (e.g., mounted in bedrock)
- Stability B: Monuments which generally hold their position/elevation well (e.g., concrete bridge abutment)
- Stability C: Monuments which may be affected by surface ground movements (e.g., concrete monument below frost line)
- Stability D: Mark of questionable or unknown vertical stability (e.g., concrete monument above frost line, or steel witness post)

In addition to NSRS bench marks, the FIRM may also show vertical control monuments established by a local jurisdiction; these monuments will be shown on the FIRM with the appropriate designations. Local monuments will only be placed on the FIRM if the community has requested that they be included, and if the monuments meet the aforementioned NSRS inclusion criteria.

To obtain current elevation, description, and/or location information for bench marks shown on the FIRM for this jurisdiction, please contact the Information Services Branch of the NGS at (301) 713-3242, or visit their Web site at www.ngs.noaa.gov.

It is important to note that temporary vertical monuments are often established during the preparation of a flood hazard analysis for the purpose of establishing local vertical control. Although these monuments are not shown on the FIRM, they may be found in the Technical Support Data Notebook associated with this FIS and FIRM. Interested individuals may contact FEMA to access this data.

3.3 Coastal Analysis

Flooding along the major streams in the City of New Brunswick results from tidal action. This necessitated the determination of whether the governing influence for inundation would result from riverine flow or tidal flow. To find this interface for floods of each recurrence interval, riverine and tidal flood heights were graphically compared, and only the higher elevation is presented on the profiles contained herein. The tidal portion was based on a constant flood height for the 10-, 2-, 1-, and 0.2-percent annual chance flood as obtained from Tetra Tech, Inc., and are 7.4, 10.8, 12.1, and 15.5 feet, respectively. These are the tidal flood heights approved by the FIA for the Raritan Bay area.

In the Borough of Spotswood, it should be noted that tidal conditions are extremely transitory, and peak tide levels are maintained for relatively short time periods. During the course of the tidal base flood cycle (1-percent annual chance flood), the gradual increase in water level would create low flow conditions through the bridges along the South River, and pressure and weir flow for the bridges along the South River. The volume of water passed by these bridges over the course of the tidal cycle is considered to be sufficient to fill that area adjacent to the stream up to an elevation of 12.1 feet. This elevation was compared to the flood elevations calculated by the riverine analysis described above, and the base flood tidal influences were found to extend up the South River into Duhernal Lake. No other streams within the study area were found to be influenced by the base tidal flood.

The Raritan Bay stillwater elevations south of the railroad pier in South Amboy were determined by Tetra Tech, Inc. These elevations are the result of a tidal analysis involving a computer model of the east coast of the United States to produce more consistent results (Tetra Tech, 1977). The elevations are primarily based on a stillwater elevation as measured at the tide gages located at Perth Amboy and Sandy Hook. The gages have a combined period of record from 1935 to 1975. In general, this stillwater elevation estimates a static condition of the tide elevation and storm surge but does not account for wave action.

In the Borough of Sayreville, tidal conditions are extremely transitory, and peak tide levels are maintained for relatively short time periods. During the course of the tidal base flood cycle (1-percent annual chance flood), the gradual increase in the water level would create low flow conditions through the bridges on the Raritan River, and pressure and weir flow for the bridges along the South River. The volume of water passed by these bridges over the course of the tidal cycle is considered to be sufficient to fill that area adjacent to the stream up to 12.1 feet. This elevation was compared with flood elevations calculated by the riverine backwater analysis. The base flood tidal influences from Raritan Bay were found to extend through all the streams studied by detailed methods except for Crossway Creek. Tides from Raritan Bay influence Crossway Creek downstream of Ernston Road.

The severity of tidal flooding is difficult to forecast since it is dependent on a number of related factors. Stillwater elevations from these maritime storms result from the combined effects of barometric pressure, wind and subsequent wave action, storm path and its resulting surge, and the stillwater elevation at the time of the storm's arrival. For a given storm in a specific location, any single factor could become the controlling cause of a tidal flood.

Over the ocean, these storms create rises in the ocean surface which are known as surges, and in northern latitudes may travel at a rate of 30 to 50 miles per hour. On the open ocean, the more intense storms produce surges which seldom exceed 3 feet and are comprised of a fault wave approximately 100 miles long. This surge phenomenon is generally caused by the force of winds circulating in a counterclockwise direction around the storm center and by the low barometric pressure associated with the storm center. As the storm surge moves into the shoal waters over the continental shelf, its movement is somewhat impeded, causing elevation increases of 6 to 10 feet above normal stillwater elevations.

The stillwater elevation is the elevation of the water due solely to the effects of the astronomical tides, storm surge, and wave setup on the water surface. The inclusion of wave heights, which is the distance from the trough to the crest of the wave, increases the water-surface elevations. The height of a wave is dependent upon wind speed and its duration, depth of water, and length of fetch. The wave crest elevation is the sum of the stillwater elevation and the portion of the wave height above the stillwater elevation.

In the Boroughs of Carteret, Sayreville (that portion of the community affected by flooding from the Raritan River), South Amboy (north of the railroad pier), South River, and in the City of Perth Amboy, as well as the Townships of East Brunswick, Edison, and Woodbridge, the stillwater elevations for this study, are for recurrence intervals of 10-, 2-, 1-, and 0.2-percent annual chance, were taken from the FIS for the City of New York (FEMA, 1983). In the New York study,

surge depths were determined independently of the astronomic tide by the application of a hypothetical storm to generate the surge. The surge is transmitted through the entire waterway system by use of a mathematical model which distributes the surge in a manner consistent with the physical and hydraulic prospectives of the waterway system and determines elevations at any selected location on the coast. Elevations between these selected locations were interpolated.

For the City of South Amboy (south of the railroad pier), the Borough of Sayreville (that portion of the community affected by flooding from Raritan Bay), and the Township of Old Bridge, the stillwater elevations for this study, are for recurrence intervals of 10-, 2-, 1-, and 0.2-percent annual chance, and were obtained from Tetra Tech, Inc. These flood heights, approved by the U.S. Department of Housing and Urban Development, are the result of a recent tidal analysis involving a computer modeling of the east coast of the United States to produce more consistent results (Tetra Tech, Inc., 1977). These tides are primarily based on a stillwater flood height as measured by tide gages. Such tide gages are located at Perth Amboy and Sandy Hook, New Jersey, which have a combined period of record from 1935 to 1975.

For the Raritan Bay, the determination of coastal inundation caused by the passage of a hurricane storm surge was approached by the joint probability method (U.S. Department of Commerce, 1970). The storm populations were described by probability distributions of five parameters which influence surge heights. These parameters included central pressure depression (measures the intensity of the storm), radius to maximum winds, forward speed of the storm, shoreline crossing point, and crossing angle. These characteristics were described statistically as based on an analysis of observed storms in the vicinity of New Jersey. The storm parameters adopted for New Jersey are shown in Table 9, "Parameter Values for Surge Elevations." Primary sources of data used were U.S. Department of Commerce, 1975, 1965, 1975; and National Hurricane Research Project, 1957). For northeasters, a report by the U.S. Department of Commerce was adopted (U.S. Department of Commerce, 1970).

CENTRAL PRESSURE (INCHES HG)	27.39	27.68	27.97	28.26	28.55	28.84	29.12	29.4	29.7
ASSIGNED PROBABILITIES STORMS OVER LAND STORMS OVER SEA	0.00 0.00	0.00 0.02	0.000 0.055	0.000 0.100	0.000 0.145	0.00 0.15	0.80 0.33	0.125 0.125	0.075 0.075
STORM RADIUS (NAUTICAL MILES [NM])					37.5				
ASSIGNED PROBABILITY					1.0				
FORWARD SPEED (KNOTS)	2	0			30		4	10	
ASSIGNED PROBABILITIES: STORMS OVER LAND STORMS OVER SEA		76 56			0.15 0.44			09 00	
DIRECTION (DEGREE)			-11				20		
ASSIGNED PROBABILITY: STORMS OVER LAND STORMS OVER SEA			0.32 0.06				0.68 0.94		
SPATIAL OCCURRENCE RATE STORMS/NM YEAR		X 10 ⁻³ X 10 ⁻³			orms Over L orms Over \$				
FEDERAL EMERGENCY MANAGEMENT AGEN	ICY								
MIDDLESEX COUNTY, I (ALL JURISDICTIONS		PA	RAME	FER VA	LUES	FOR S	URGE	ELEVA	TIONS

A numerical hydrodynamic model of the region was used to simulate the coastal surge generated by any chosen storm (that is, any combination of the five storm parameters defined previously). Performing such simulations for a large number of storms, each of known total probability, permits one to establish the frequency distribution of surge heights as a function of coastal location. These distributions incorporate the large-scale surge behavior but do not include an analysis of the added effects associated with much finer-scale wave phenomena such as wave height, setup, or runup. The effects of northeasters were taken from the study by Meyers (FEMA, 1983). The astronomic tide for the region is then statistically combined with the computed storm surge to yield recurrence intervals of total water level. The entire procedure is detailed in the <u>Coastal Flooding Handbook</u> (USACE, 1975).

The Raritan Bay stillwater elevations for the Cheesequake Creek area were obtained from the FIS for the City of South Amboy (FEMA, 1983).

In the Boroughs of Carteret, Sayreville, and South River, and in the City of Perth Amboy, and in the Townships of East Brunswick, Edison, and Woodbridge, the stillwater elevations for this study were taken from the FIS for the City of New York (FEMA, 1983). In the New York study, surge depths were determined independently of the astronomic tide by the application of a hypothetical storm to generate the surge. The surge is transmitted through the entire waterway system by use of a mathematical model which distributes the surge in a manner consistent with the physical and hydraulic prospectives of the waterway system and determines elevations at any selected location on the coast. Elevations between these selected locations were interpolated.

In the Boroughs of Savreville and Spotswood, as well as the Township of Edison, tidal conditions are extremely transitory, and peak tide levels are maintained for relatively short time periods. During the course of the tidal base flood cycle (1percent annual chance flood), the gradual increase in the water level would create low flow conditions through the bridges on the Raritan River, and pressure and weir flow for the bridges along the South River. The volume of water passed by these bridges over the course of the tidal cycle is considered to be sufficient to fill that area adjacent to the stream up to 9.0 feet, in the Township of Edison, and 11.0 feet in the Boroughs of Sayreville and Spotswood. This elevation was compared with flood elevations calculated by the riverine backwater analysis. For the Township of Edison, the base flood (1-percent annual chance) tidal influences were found to extend up to a point just downstream of the New Jersey Turnpike For the Borough of Sayreville, the base flood tidal influences from bridge. Raritan Bay were found to extend through all the streams studied by detailed methods except for Crossway Creek. Tides from Raritan Bay influence Crossway Creek downstream of Ernston Road. For the Borough of Spotswood, the elevation was compared to the flood elevations calculated by the existing riverine analysis, and the base flood tidal influences were found to extend up the South River into Duhernal Lake.

In the Borough of Sayreville, the Cities of Perth Amboy and South Amboy, and the Townships of Old Bridge and Woodbridge, the addition of wave heights to stillwater elevations was performed using methodology recommended by the National Academy of Sciences (NAS) (National Academy of Sciences, 1977). This methodology considers maximum conditions associated with the 1-percent annual chance flood, and uses transects which are oriented perpendicular to the average mean sea level shoreline to deduce wave crest elevations.

Areas of shoreline subjected to significant wave attack are referred to as coastal high hazard zones. Methods have been developed to determine which sections of shoreline fall into this category (USACE, 1975). The factors considered for such a determination include: choice of a suitable fetch, its length and width, sustained wind velocities, coastal water depths, and physical features of the shoreline that would appreciably affect wave propagation. All of these factors are analyzed to determine if a wave with a height of 3 feet could be generated. The 3-foot wave has been determined to be the minimum size wave capable of causing major damage to conventional wood-frame or brick veneer structures. This criterion has been adopted by FEMA for the determination of V zones.

The methodology for analyzing the effects of wave heights associated with coastal storm surge flooding is described in the National Academy of Sciences (NAS) report (NAS, 1977). This method is based on three major concepts. First, depth-limited waves in shallow water reach a maximum breaking height that is equal to 0.78 times the stillwater depth, and the wave crest is 70 percent of the total wave height above the stillwater level. The second major concept is that the wave height may be diminished by the dissipation of energy due to the presence of obstructions such as sand dunes, dikes, seawalls, buildings, and vegetation. The amount of energy dissipation is a function of the physical characteristics of the obstruction and is determined by procedures described in the NAS report mentioned above. The third major concept is that wave height can be regenerated in open fetch areas due to the transfer of wind energy to the water. This added energy is related to fetch length and depth.

These concepts and equations were used to compute wave heights and wave crest elevations associated with the 1-percent annual chance storm surge. Accurate topographic, land-use, and land-cover data are required for the wave height analysis.

Areas exist where greater flood hazards may be expected than are presently indicated on the revised FIRM due to potential wave action. These areas include, but may not be limited to, the Raritan River shoreline from the State Route 35 bridge to a point approximately 1,500 feet west of the railroad bridge. Due to limitations of the data and engineering methodology, including a knowledge of wave generation and propagation mechanisms and wind-surge correlations in time, the magnitude and extend of wave hazard cannot be accurately determined at present and these areas have been omitted from rigorous analysis. As further refinements to existing study methods become available, the FIRM will be revised accordingly.

Hydraulic analyses of the shoreline characteristics of the flooding sources affected by wave action were carried out to provide estimates of wave heights and corresponding wave crest elevations of floods of the selected recurrence intervals along each of the shorelines.

Areas of coastline subject to significant wave attack are referred to as coastal high hazard zones. The USACE has established the 3-foot breaking wave as the criterion for identifying the limit of coastal high hazard zones (USACE, 1975). The 3-foot wave has been determined as the minimum size wave capable of causing major damage to conventional wood frame or brick veneer structures. This criterion has been adopted by FEMA for the determination of V zones.

The methodology for analyzing wave heights and corresponding wave crest elevations was developed by the NAS (NAS, 1977). The NAS methodology is based on three major concepts.

First, a storm surge on the open coast is accompanied by waves. The maximum height of these waves is related to the depth of water by the following equation:

$$H_{b} = 0.78d$$

where H_b is the crest to trough height of the maximum or breaking wave and d is the stillwater depth. The elevation of the crest of an unimpeded wave is determined using the equation:

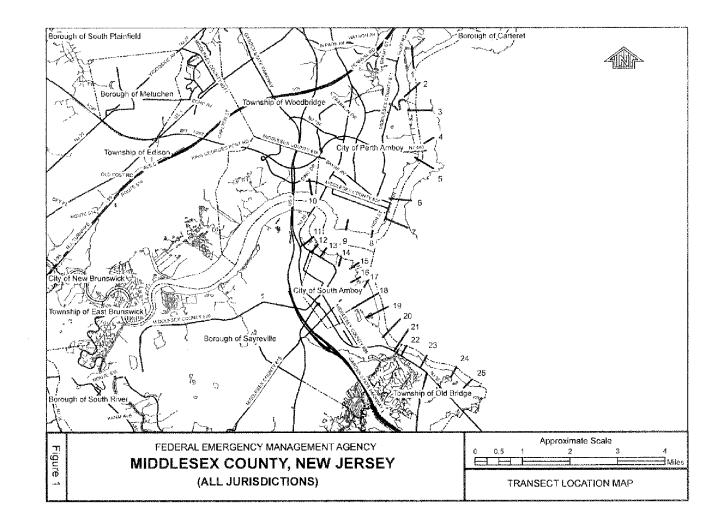
$$Z_w = S_* + 0.7H_* = S + 0.55d$$

where Z_w is the wave crest elevation, S* is the stillwater elevation at the site, and H* is the wave height at the site. The 0.7 coefficient is the portion of the wave height which reaches above the stillwater elevation. H_b is the upper limit for H*.

The second major concept is that the breaking wave height may be diminished by dissipation of energy by natural or man-made obstructions. The wave height transmitted past a given obstruction is determined by the following equation:

$$H_t = BH_i$$

where H_t is the transmitted wave height, H_i is the incident wave height, and B is a transmission coefficient ranging from 0.0 to 1.0. The coefficient is a function of the physical characteristics of the obstruction. Equations have been developed by the NAS to determine B for vegetation, buildings, natural barriers such as dunes, and man-made barriers such as breakwaters and seawalls (NAS, 1977).


The third concept deals with unimpeded reaches between obstructions. New wave generation can result from wind action. This added energy is related to distance and mean depth over the unimpeded reach.

These concepts and equations were used to compute wave heights and wave crest elevations associated with the 1-percent annual chance storm surge. Accurate topographic, land-use, and land cover data are required for the wave height analysis. Maps of the study area at a scale of 1:2,400 with a contour interval of 2 feet were used for the topographic data (Township of Woodbridge, 1961). The land-use and land cover data were obtained from aerial photographs of the study area (Keystone Aerial Survey, 1979).

Wave heights were computed along transects (cross-section lines) that were located along the coastal areas, as illustrated in Figure 1, in accordance with the <u>User's Manual for Wave Height Analysis</u> (FEMA, 1981). The transects were located with consideration given to the physical and cultural characteristics of the land so that they would closely represent conditions in their locality. Transects were spaced close together in areas of complex topography and dense development. In areas having more uniform characteristics, they were spaced at larger intervals. It was also necessary to locate transects in areas where unique flooding existed and in areas where computed wave heights varied significantly between adjacent transects. Table 10, "Transect Descriptions," provides a listing of the transect locations and stillwater elevations, as well as initial wave crest elevations.

		STARTING ELEVATION (feet NAVD)				
<u>TRANSECT</u>	<u>LOCATION</u>	1-PERCENT ANNUAL CHANCE <u>STILLWATER</u>	MAXIMUM 1-PERCENT ANNUAL CHANCE WAVE CREST			
No. 1	Arthur Kill shoreline from Woodbridge-Carteret corporate limits to the confluence of Smith Cr		11			
No. 2	Arthur Kill shoreline from the confluence of Smith Creek to the Woodbridge-Perth Amb corporate limits	8.6 boy	11			
No. 3	Arthur Kill shoreline from the Woodbridge-Perth Amboy corporat limits to 1,200 feet south of the Woodbridge/Perth Amboy corporat limits		11			
No. 4	Arthur Kill shoreline from 1,200 fe south of the Woodbridge-Perth Am corporate limits to State Route 440		11			

TABLE 10 - TRANSECT DESCRIPTIONS

TABLE 10 - TRANSECT DESCRIPTIONS - continued

		STARTING EI 1-PERCENT	LEVATION (feet NAVD)
<u>TRANSECT</u>	LOCATION	ANNUAL CHANCE STILLWATER	MAXIMUM 1-PERCENT ANNUAL CHANCE WAVE CREST
No. 5	Arthur Kill shoreline from State Route 440 to 1,000 feet north of Buckingham Avenue	8.7	11
No. 6	Arthur Kill shoreline from 1,000 feet north of Buckingham Avenue to Fayette Street	8.7	12
No. 7	Arthur Kill shoreline from Fayette Street to the confluence of Arthur Ki and the Raritan River	9.0 ill	13
No. 8	Raritan River shoreline from conflue of Arthur Kill and the Raritan River railroad bridge		13
No. 9	Raritan River shoreline from railroad bridge to 1,500 feet west of railroad bridge	d 9.0	13
No. 10	Raritan River shoreline from New Jersey Garden Parkway bridge to State Route 35 bridge	9.0	12
No. 11	Raritan River shoreline from the State Route 35 bridge to the Sayreville-South Amboy corporate limits	9.0	12
No. 12	Raritan River shoreline from the Sayreville-South Amboy corporate limits to 600 feet southeast of the Sayreville/ South Amboy corporate limits	9.0	11

TABLE 10 - TRANSECT DESCRIPTIONS - continued

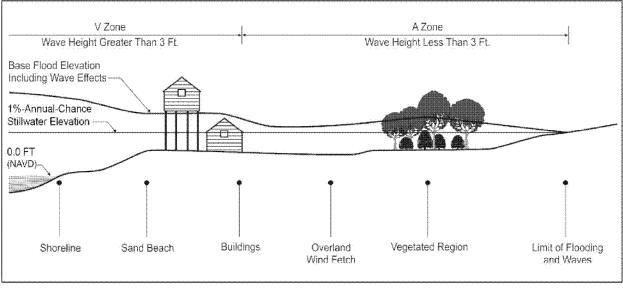

		STARTING ELEVATION (feet NAVD)				
<u>TRANSECT</u>	<u>LOCATION</u>	1-PERCENT ANNUAL CHANCE <u>STILLWATER</u>	MAXIMUM 1-PERCENT ANNUAL CHANCE WAVE CREST			
No. 13	Raritan River shoreline from 600 feet southeast of the Sayreville-South Amboy corporate limits to the railroad bridge	9.0	12			
No. 14	Raritan River shoreline from the railroad bridge to Church Street, extended	9.0	14			
No. 15	Raritan Bay shoreline from Church Street, extended to the railroad pier	11.0	17			
No. 16	Raritan Bay shoreline from the railroad pier to David Street, extended	11.0	18			
No. 17	Raritan Bay shoreline from David Street, extended, to George Street, extended	11.0	18			
No. 18	Raritan Bay shoreline from George Street, extended to the South Amboy-Sayreville corporate limits	11.0	18			
No. 19	Raritan Bay shoreline from the Sayreville-South Amboy corporate Limits to Luke Street, extended	11.0	17			
No. 20	Raritan Bay shoreline from Luke Street, extended, to First Street, extended	11.0	17			
No. 21	Raritan Bay shoreline from First Street, extended, to Sayreville- Old Bridge corporate limits	11.0	17			

TABLE 10 - TRANSECT DESCRIPTIONS - continued

		STARTING EI 1-PERCENT	LEVATION (feet NAVD)
<u>TRANSECT</u>	LOCATION	ANNUAL CHANCE STILLWATER	MAXIMUM 1-PERCENT ANNUAL CHANCE WAVE CREST
No. 22	Raritan Bay shoreline from Sayreville-Old Bridge corporate limits to Pratt Avenue, extended	10.8	17
No. 23	Raritan Bay shoreline from Pratt Avenue, extended to Harding Road, extended	10.8	17
No. 24	Raritan Bay shoreline from Harding Road, extended, to Boulevard West, extended	10.8	17
No. 25	Raritan Bay shoreline from Boulevard West, extended, to county boundary	10.8	17

Along each transect, wave heights and wave crest elevations were computed considering the combined effects of changes in ground elevation, vegetation, and physical features. Wave heights were calculated to the nearest 0.1 foot, and wave crest elevations were determined at whole-foot increments along the transects. The calculations were carried inland along the transect until the wave crest elevation was permanently less than 0.5 foot above the stillwater elevation or the coastal flooding met another flooding source (i.e., riverine) with an equal water-surface elevation. The results of the calculations are accurate until local topography, vegetation, or cultural development of the community undergo any major changes.

Figure 2 is a profile for a typical transect illustrating the effects of energy dissipation and regeneration on a wave as it moves inland. This figure shows the wave crest elevations being decreased by obstructions, such as buildings, vegetation, and rising ground elevations, and being increased by open, unobstructed wind fetches. Actual conditions in community may not include all the situations illustrated in Figure 2.

TRANSECT SCHEMATIC

Figure 2

The stillwater elevations have been determined for the 10-, 2-, 1-, and 0.2-percent annual chance floods for the flooding sources studied by detailed methods and are summarized in Table 11, "Summary of Stillwater Elevations."

		ELEVATION	(feet NAVD)	
FLOODING SOURCE AND LOCATION	<u>10-PERCENT</u>	<u>2-PERCENT</u>	1-PERCENT	0.2-PERCENT
ARTHUR KILL				
Shoreline at Smith Street, extended	6.5	7.9	9.0/13*	11.1
Shoreline south of State Route 440 bridge	6.3	7.9	8.7/12*	10.7
Shoreline north of State Route 440 bridge	6.1	7.7	8.6/11*	10.3
Entire shoreline within Township of				
Woodbridge	6.1	7.7	8.6/11*	10.3
At the Woodbridge-Carteret corporate				
limits	6.0	7.6	8.5	10.2
At Saint Anne Street (extended)	5.4	6.9	7.5	9.3
RAHWAY RIVER				
Entire shoreline within the Borough of				
Carteret	5.4	6.8	7.4	9.2

TABLE 11 - SUMMARY OF STILLWATER ELEVATIONS

*Stillwater elevation/maximum wave crest elevation

74

ELEVATION (feet NAVD) **10-PERCENT** 2-PERCENT 0.2-PERCENT FLOODING SOURCE AND LOCATION **1-PERCENT** RARITAN BAY At the USGS gage on the South River at Old Bridge 6.5 8.2 9.0 11.1 At the mouth of the South River in the Township of East Brunswick 6.5 8.2 9.0 11.1 Backwater from Raritan River affecting Tennents Brook, Deep Run, and South 9.0 River 6.5 8.2 11.1 Entire shoreline within City of South Amboy 6.3 9.7 11.0/18* 14.4 South of the railroad pier in South Amboy 6.3 9.7 11.0 14.4Raritan River in the City of New Brunswick 6.3 9.7 11.014.4Lawrence Brook in the City of New Brunswick 6.3 9.7 11.0 14.4 Entire shoreline within the Township of Old Bridge 9.7 10.8/17* 14.4 6.3 RARITAN RIVER Entire shoreline within City of South Amboy 6.5 8.2 9.0/1411.1 Entire shoreline within Township of Woodbridge 6.5 8.2 9.0/1411.1

6.5

TABLE 11 - SUMMARY OF STILLWATER ELEVATIONS - continued

*Stillwater elevation/maximum wave crest elevation

3.4 Vertical Datum

Entire shoreline within City of Perth Amboy

All FISs and FIRMs are referenced to a specific vertical datum. The vertical datum provides a starting point against which flood, ground, and structure elevations can be referenced and compared. Until recently, the standard vertical datum in use for newly created or revised FISs and FIRMs was the National Geodetic Vertical Datum of 1929 (NGVD 29). With the finalization of the North American Vertical Datum of 1988 (NAVD 88), many FIS reports and FIRMs are being prepared using NAVD 88 as the referenced vertical datum.

8.2

9.0/13

11.1

All flood elevations shown in this FIS report and on the FIRM are referenced to NAVD 88. Structure and ground elevations in the community must, therefore, be referenced to NAVD 88. It is important to note that adjacent communities may be referenced to NGVD 29. This may result in differences in base flood elevations across the corporate limits between the communities.

Prior versions of the FIS report and FIRM were referenced to NGVD 29. When a datum conversion is effected for an FIS report and FIRM, the Flood Profiles and base flood elevations (BFEs) reflect the new datum values. To compare structure and ground elevations to 1-percent annual chance flood elevations shown in the FIS and on the FIRM, the subject structure and ground elevations must be referenced to the new datum values.

As noted above, the elevations shown in this FIS report and on the FIRM for Middlesex County are referenced to NAVD 88. Ground, structure, and flood elevations may be compared and/or referenced to NGVD 29 by applying a standard conversion factor. The conversion factor to NGVD 29 is +1.1 feet.

The BFEs shown on the FIRM represent whole-foot rounded values. For example, a BFE of 102.4 will appear as 102 on the FIRM and 102.6 will appear as 103. Therefore, users that wish to convert the elevations in this FIS to NGVD 29 should apply the stated conversion factor(s) to elevations shown on the Flood Profiles and supporting data tables in the FIS report, which are shown at a minimum to the nearest 0.1 foot.

For more information on NAVD 88, see <u>Converting the National Flood Insurance</u> <u>Program to the North American Vertical Datum of 1988</u>, FEMA Publication FIA-20/June 1992, or contact the Vertical Network Branch, National Geodetic Survey, Coast and Geodetic Survey, National Oceanic and Atmospheric Administration, Rockville, Maryland 20910 (Internet address http://www.ngs.noaa.gov).

4.0 <u>FLOODPLAIN MANAGEMENT APPLICATIONS</u>

The NFIP encourages State and local governments to adopt sound floodplain management programs. To assist in this endeavor, each FIS provides 1-percent annual chance floodplain data, which may include a combination of the following: 10-, 2-, 1-, and 0.2-percent annual chance flood elevations; delineations of the 1- and 0.2-percent annual chance floodplains; and 1-percent annual chance floodway. This information is presented on the FIRM and in many components of the FIS, including Flood Profiles, Floodway Data tables, and Summary of Stillwater Elevation tables. Users should reference the data presented in the FIS as well as additional information that may be available at the local community map repository before making flood elevation and/or floodplain boundary determinations.

4.1 Floodplain Boundaries

To provide a national standard without regional discrimination, the 1-percent annual chance flood has been adopted by FEMA as the base flood for floodplain management purposes. The 0.2-percent annual chance flood is employed to indicate additional areas of flood risk in the county. For the streams studied in detail, the 1- and 0.2-percent annual chance floodplain boundaries have been delineated using the flood elevations determined at each cross section. Between cross sections, the boundaries were interpolated using bare earth digital elevation data provided by Middlesex County. The topographic data was composed of bare earth mass points and 3-D breaklines. The point elevation data is comprised mostly of LiDAR with some spot heights generated from aerial photography flown within the same year in support of digital orthophotography acquisition. The 3-D breaklines were produced from 1"=1,000' high-precision color aerial photography collected in 2002 using photogrammeteric methods. Water surface elevation triangular irregular networks (TINs) were created from the model cross sections and intersected with the bare earth ground TIN to produce the floodplain corridor. The resulting floodplains were smoothed and incorporated in the DFIRM.

Similarly, using datum-converted effective flood profiles for non-revised, detailed streams, all flood boundaries were made current with the topography supplied by Middlesex County.

The 1- and 0.2-percent annual chance floodplain boundaries are shown on the FIRM (Exhibit 2). On this map, the 1-percent annual chance floodplain boundary corresponds to the boundary of the areas of special flood hazards (Zones A and AE), and the 0.2-percent annual chance floodplain boundary corresponds to the boundary of areas of moderate flood hazards. In cases where the 1- and 0.2-percent annual chance floodplain boundaries are close together, only the 1-percent annual chance floodplain boundaries may lie above the flood elevations but cannot be shown due to limitations of the map scale and/or lack of detailed topographic data.

For the streams studied by approximate methods, only the 1-percent annual chance floodplain boundary is shown on the FIRM (Exhibit 2). These boundaries were also delineated using the topographic data provided by Middlesex County.

4.2 Floodways

Encroachment on floodplains, such as structures and fill, reduces flood-carrying capacity, increases flood heights and velocities, and increases flood hazards in areas beyond the encroachment itself. One aspect of floodplain management involves balancing the economic gain from floodplain development against the resulting increase in flood hazard. For purposes of the NFIP, a floodway is used as a tool to assist local communities in this aspect of floodplain management. Under this concept, the area of the 1-percent annual chance floodplain is divided into a floodway and a floodway fringe. The floodway is the channel of a stream, plus any adjacent floodplain areas, that must be kept free of encroachment so that the 1-percent annual chance flood can be carried without substantial increases in flood heights. Minimum federal standards limit such increases to 1.0 foot, provided that hazardous velocities are not produced. However, the State of New Jersev has established criteria limiting the increase in flood heights to 0.2 foot. Thus. floodways having no more than a 0.2-foot surcharge have been delineated for this countywide FIS. The floodways in this FIS are presented to local agencies as minimum standards that can be adopted directly or that can be used as a basis for additional floodway studies.

The floodways presented in this FIS were computed for certain stream segments on the basis of equal conveyance reduction from each side of the floodplain.

Floodway widths were computed at cross sections. Between cross sections, the floodway boundaries were interpolated. The results of the floodway computations are tabulated for selected cross sections (Table 12). The computed floodways are shown on the FIRM (Exhibit 2). In cases where the floodway and 1-percent annual chance floodplain boundaries are either close together or collinear, only the floodway boundary is shown.

Portions of the floodways for Green Brook, Matawan Creek, Mile Run, Millstone River, Rahway River, and Raritan River, extend beyond the county boundary.

Near the mouths of streams studied in detail, floodway computations are made without regard to flood elevations on the receiving water body. Therefore, "Without Floodway" elevations presented in Table 12 for certain downstream cross sections of Ambrose Brook, Barclay Brook, Bonygutt Brook, Boundary Branch Mill Brook No. 1, Cheesequake Creek, Crossway Creek, Deep Run, Dismal Brook, Doty's Brook, Heards Brook, Lawrence Brook, Mellins Creek, Mill Brook No. 1, Parkway Branch, Rahway River, Raritan River, Sawmill Brook No. 1, Shallow Brook, South River, Spa Spring Creek, Stream 14-14-2-3, Sucker Brook, Tennents Brook, Tributary to Manalapan Brook, and Woodbridge River, are lower than the regulatory flood elevations in that area, which must take into account the 1-percent annual chance flooding due to backwater from other sources.

Encroachment into areas subject to inundation by floodwaters having hazardous velocities aggravates the risk of flood damage, and heightens potential flood hazards by further increasing velocities. A listing of stream velocities at selected cross sections is provided in Table 12, "Floodway Data." In order to reduce the risk of property damage in areas where the stream velocities are high, the community may wish to restrict development in areas outside the floodway.

The area between the floodway and 1-percent annual chance floodplain boundaries is termed the floodway fringe. The floodway fringe encompasses the portion of the floodplain that could be completely obstructed without increasing the water-surface elevation of the 1-percent annual chance flood by more than 1.0 foot at any point. Typical relationships between the floodway and the floodway fringe and their significance to floodplain development are shown in Figure 3.

	FLOODING SOURCE		FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)			
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Ambrose Brook									
A	2,070	157	629	5.2	34.5	25.6 ²	25.8	0.2	
В	2,860	190	1,149	2.8	34.5	30.1 ²	30.2	0.1	
С	3,870	138	1,122	2.9	34.5	32.9 ²	32.9	0.0	
D	4,400	124	979	3.3	34.5	33.0 ²	33.0	0.0	
E	5,070	191	1,133	2.6	34.5	34.0 ²	34.0	0.0	
F	5,790	97	444	6.7	34.5	34.0 ²	34.0	0.0	
G	6,500	149	778	3.8	35.7	35.7	35.7	0.0	
Н	7,470	130	791	3.8	39.2	39.2	39.2	0.0	
1	8,080	185	1,219	2.5	41.1	41.1	41.1	0.0	
J	8,725	180	1,133	2.6	41.4	41.4	41.6	0.2	
К	9,440	190	1,160	2.6	41.6	41.6	41.8	0.2	
L	9,605	215	1,249	2.4	41.9	41.9	42.0	0.1	
М	10,280	205	1,614	1.9	42.1	42.1	42.3	0.2	
N	10,650	510	3,153	0.9	42.3	42.3	42.5	0.2	
0	11,250	367	2,472	1.2	42.4	42.4	42.6	0.2	
Р	11,890	417	2,800	1.1	42.5	42.5	42.7	0.2	
Q	12,855	555	3,469	0.9	43.2	43.2	43.4	0.2	
R	13,593	708	3,834	0.8	43.3	43.3	43.5	0.2	
S	14,582	488	2,078	1.4	43.4	43.4	43.6	0.2	
Т	14,932	340	1,507	2.0	43.8	43.8	43.9	0.1	
U	15,482	290	1,811	1.7	44.1	44.1	44.3	0.2	
V	15,696	314	1,601	1.9	44.2	44.2	44.4	0.2	
W	16,356	152	714	4.2	45.2	45.2	45.3	0.1	
Х	17,190	380	2,235	1.3	45.6	45.6	45.8	0.2	
Y	17,760	250	1,634	1.8	46.6	46.6	46.8	0.2	
Z	18,270	250	1,515	2.0	46.7	46.7	46.9	0.2	

¹Feet above confluence with Green Brook

TABLE

12

²Elevation computed without consideration of backwater effects from Green Brook

FEDERAL	EMERGENCY	MANAGEMENT	AGENCY

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

FLOODWAY DATA

AMBROSE BROOK

FLOODING SOUF	FLOODING SOURCE		FLOODWA	.Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)			
CROSS SECTION	DISTANCE1	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Ambrose Brook (continued)	,		· · · · ·		· / ·	· · · · · · · · · · · · · · · · · · ·	1	
AA	18,820	250	1,522	2.0	46.9	46.9	47.1	0.2
AB	18,900	250	1,412	2.1	46.9	46.9	47.1	0.2
AC	19,030	270	1,194	2.1	46.9	46.9	47.1	0.2
AD	19,230	384	2,111	1.2	47.2	47.2	47.4	0.2
AE	19,360	380	1,285	1.9	47.2	47.2	47.4	0.2
AF	19,635	368	2,448	1.0	47.3	47.3	47.5	0.2
AG	20,295	383	2,182	1.1	47.3	47.3	47.5	0.2
AH	21,101	207	944	2.6	47.4	47.4	47.6	0.2
AI	22,126	249	901	2.8	47.8	47.8	48.0	0.2
AJ	23,969	266	1,086	1.8	50.0	50.0	50.1	0.1
AK	24,579	236	663	3.0	50.2	50.2	50.3	0.1
AL	25,437	220	503	3.9	51.3	51.3	51.5	0.2
AM	26,357	231	769	2.6	52.4	52.4	52.5	0.1
AN	26,959	210	791	2.5	52.8	52.8	53.0	0.2
AO	27,567	217	823	2.4	53.0	53.0	53.2	0.2
AP	27,907	300	1,005	2.0	53.9	53.9	54.1	0.2
AQ	28,087	220	1,282	1.5	55.4	55.4	55.6	0.2
AR	28,523	139	815	1.8	56.0	56.0	56.2	0.2
AS	29,456	140	671	2.2	56.2	56.2	56.4	0.2
AT	30,231	176	655	2.3	56.6	56.6	56.8	0.2
AU	30,435	319	1,879	0.8	61.1	61.1	61.3	0.2
AV	32,535	210	925	1.5	61.2	61.2	61.4	0.2
AW	34,137	147	425	3.1	62.8	62.8	63.0	0.2
AX	35,151	198	550	2.4	64.3	64.3	64.5	0.2
AY	35,817	199	587	2.2	65.1	65.1	65.3	0.2
AZ	36,317	276	685	1.9	65.6	65.6	65.8	0.2
	!		'					

¹Feet above confluence with Green Brook

TABLE

12

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

AMBROSE BROOK

						1			
	FLOODING SOUF	RCE		FLOODWA	Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)			
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Am	brose Brook (continued) BA BB BC BD BE BF BG BH BI BJ	36,797 37,057 37,747 38,607 39,731 40,151 40,692 41,126 41,535	227 222 245 249 132 100 255 270 47 161	581 974 715 774 322 531 1,498 960 308 611	2.2 1.3 1.8 1.7 4.0 2.4 0.5 0.8 2.6 1.3	66.0 68.1 68.3 68.5 68.7 76.8 76.9 77.0 77.4 77.7	66.0 68.1 68.3 68.5 68.7 76.8 76.9 77.0 77.4 77.7	66.2 68.3 68.5 68.7 68.8 76.8 77.1 77.2 77.6 77.9	0.2 0.2 0.2 0.1 0.0 0.2 0.2 0.2 0.2 0.2
'Fe	et above confluence with Gree	en Brook							
TABLE	FEDERAL EMERGENCY MANAGEMENT AGENCY MIDDLESEX COUNTY, NJ				FLOODWAY DATA				
E 12						AMBR	OSE BRO	ОК	

	FLOODING SOUR	CE	FLOODWAY		BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)				
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
¹ Fee	clay Brook A B C D E F G H I J K L U	960 1,965 3,355 4,245 5,065 6,050 7,770 9,165 11,180 12,065 13,500 15,340 15,340 :haponix Brook ideration of backw	189 180 206 130 224 317 189 111 201 99 206 347 347	506 756 732 440 882 937 580 316 560 257 184 624	2.7 1.8 1.9 3.2 1.0 0.9 1.5 2.7 1.4 3.0 4.2 1.2	34.2 34.9 36.6 37.8 39.9 40.2 43.1 45.7 51.6 53.2 59.4 69.3	32.6 ² 34.9 36.6 37.8 39.9 40.2 43.1 45.7 51.6 53.2 59.4 69.3	32.8 35.0 36.8 38.0 40.1 40.4 43.3 45.9 51.8 53.4 59.4 69.5	0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
	FEDERAL EMERGENO			-					
TABLE	MIDDLESE	X COUNT	COUNTY, NJ		FLOODWAY DATA				
E 12	(ALL JUR	ISDICTIO	NS)	BARCLAY BROOK			OK		

_										
	FLOODING SOUR	CE	FLOODWAY		BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)					
	CROSS SECTION	DISTANCE1	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
	rclay's Brook A B C D E F G H I J K L M N N	180 767 1,357 1,437 1,862 2,273 3,500 3,860 4,265 4,565 4,860 5,155 5,465 5,685	40 51 36 19 116 67 57 42 50 40 50 32 44 160	94 192 136 89 345 284 244 153 176 150 149 86 114 1,492	8.8 4.3 6.0 9.2 2.4 2.9 3.1 5.0 4.3 5.1 3.6 6.2 4.7 0.4	43.7 46.6 48.9 50.4 52.7 54.4 57.8 58.3 59.7 60.9 62.0 63.3 65.8 80.5	43.7 46.6 48.9 50.4 52.7 54.4 57.8 58.3 59.7 60.9 62.0 63.3 65.8 80.5	43.7 46.8 48.9 50.4 52.8 54.5 57.9 58.4 59.9 61.0 62.2 63.5 65.8 80.5	$\begin{array}{c} 0.0\\ 0.2\\ 0.0\\ 0.0\\ 0.1\\ 0.1\\ 0.1\\ 0.2\\ 0.1\\ 0.2\\ 0.2\\ 0.0\\ 0.0\\ 0.0\\ \end{array}$	
FEDERAL EMERGENCY MANAGEMENT AGENCY FLOODWAY DATA MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)							ТА			
E 12	(ALL JUR	ISDICTIO	NS)		BARCLAY'S BROOK			OOK		

FLOODING SOURCE			FLOODWAY	.Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)			
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Beaverdam Brook	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · ·	, ,	,	('	,	
A	92,465	265	1,226	0.6	52.4	52.4	52.6	0.2
В	92,550	280	862	0.8	52.6	52.6	52.8	0.2
С	92,770	320	916	0.8	52.6	52.6	52.8	0.2
D	92,855	325	1,337	0.5	53.3	53.3	53.4	0.1
E	93,620	175	232	3.0	53.3	53.3	53.4	0.1
F	94,800	150	367	1.9	56.2	56.2	56.4	0.2
G	96,480	155	334	2.1	60.7	60.7	60.9	0.2
н	97,050	329	788	0.7	61.5	61.5	61.7	0.2
· · · · · · · · · · · · · · · · · · ·	97,230	313	1,125	0.5	63.2	63.2	63.2	0.0
J ,	97,530	435	1,476	0.4	64.3	64.3	64.3	0.0
К	98,300	344	963	0.5	64.3	64.3	64.3	0.0
L '	98,400	336	586	0.8	64.3	64.3	64.3	0.0
М	98,615	269	468	1.0	64.4	64.4	64.4	0.0
N	98,725	273	531	0.9	64.4	64.4	64.5	0.1
0	99,200	105	104	3.3	64.9	64.9	65.0	0.1
Р	99,380	82	231	1.5	68.3	68.3	68.3	0.0
Q	100,120	14	33	6.0	68.7	68.7	68.8	0.1
R	100,240	49	130	1.5	71.1	71.1	71.1	0.0
S T	101,260	14	31	6.5	72.9	72.9	73.0	0.1
	101,960	45	56	2.0	77.3	77.3	77.4	0.1
U	102,380	538	3,661	0.1	89.0	89.0	89.0	0.0
V	102,960	333	1,865	0.3	89.0	89.0	89.0	0.0
W	103,970	82	134	3.1	89.0	89.0	89.0	0.0

¹Feet above mouth of Raritan River

TABLE

12

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

BEAVERDAM BROOK

FLOODING SOUF	RCE		FLOODWAY	Y	v	BASE FI VATER-SURFAC (FEET N	CE ELEVATION	
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Bee Brook	1 1	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	,, 				
Α	750 ¹	156	1,505	0.3	64.8	64.8	65.0	0.2
В	1,452 ¹	54	122	3.1	68.6	68.6	68.7	0.1
С	2,149 ¹	200	1,426	0.3	78.3	78.3	78.3	0.0
D	2,759 ¹	69	440	0.9	78.3	78.3	78.3	0.0
E	3,363 ¹	72	305	1.1	78.3	78.3	78.3	0.0
F	4,105 ¹	63	84	4.0	78.5	78.5	78.5	0.0
G	4,572 ¹	207	261	1.3	81.7	81.7	81.8	0.1
	.,	1		1				
Bentley's Brook		1		1				
A	620 ²	220	768	1.6	100.6	100.6	100.8	0.2
В	767 ²	275	1,263	1.0	101.7	101.7	101.9	0.2
С	1,517 ²	206	692	1.8	101.8	101.8	102.0	0.2
D	1,784 ²	390	1,124	1.1	102.0	102.0	102.2	0.2
E E	2,834 ²	435	1,616	0.8	102.2	102.2	102.4	0.2
E F	3,619 ²	510	1,812	0.7	102.3	102.3	102.5	0.2
G	4,369 ²	505	1,870	0.6	102.3	102.3	102.5	0.2
_	.,	1	.,	1 ,				
Bog Brook		1		1				
A	77,470 ³	62	125	0.7	29.0	29.0	29.2	0.2
В	77,940 ³	90	115	1.7	31.1	31.1	31.3	0.2
С	78,650 ³	36	40	3.5	33.3	33.3	33.4	0.1
D	78,745 ³	14	35	4.0	33.9	33.9	34.0	0.1
E	79,140 ³	16	25	5.6	35.7	35.7	35.7	0.0
F	79,189 ³	7	19	7.4	35.8	35.8	35.8	0.0
l		1		1				
l		1		1				
l		1		1				
¹ Feet above confluence with Dev		<u> </u>	<u> </u>	<u> </u>				

¹Feet above confluence with Devils Brook

²Feet above confluence with Millstone River

³Feet above mouth of Raritan River

TABLE

12

FEDERAL	EMERGENC	y manag	EMENT AG	ENCY

FLOODWAY DATA

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

BEE BROOK - BENTLEY'S BROOK – BOG BROOK

FLOODING SOL	JRCE		FLOODWA	.Y	v	NATER-SURFAC	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)			
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
3onhamtown Brook			· ·		,	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	1		
A	285 ¹	100	316	0.7	62.8	62.8	62.9	0.1		
В	395 ¹	17	66	3.3	62.8	62.8	63.0	0.2		
С	755 ¹	39	88	2.5	65.5	65.5	65.5	0.0		
D	1,105 ¹	19	48	4.6	66.6	66.6	66.7	0.1		
E	1,610 ¹	110	138	1.6	69.6	69.6	69.6	0.0		
F	1,840 ¹	105	181	1.2	69.8	69.8	70.0	0.2		
G	2,185 ¹	15	74	7.1	70.4	70.4	70.5	0.1		
Н	2,485 ¹	15	114	4.6	73.3	73.3	73.3	0.0		
I	2,600 ¹	15	69	10.8	75.7	75.7	75.7	0.0		
J	2,780 ¹	120	582	1.3	78.1	78.1	78.1	0.0		
K	3,310 ¹	108	303	2.3	79.1	79.1	79.1	0.0		
L	4,180 ¹	90	207	3.32	80.7	80.7	80.9	0.2		
Μ	4,760 ¹	31	119	5.80	81.9	81.9	82.1	0.2		
Ν	5,710 ¹	31	183	3.76	85.8	85.8	85.8	0.0		
3onygutt Brook	,	1	'			1	1	1		
A	3,800 ²	219	748	1.3	46.1	43.6 ³	43.6	0.0		
В	4,760 ²	169	224	4.4	46.1	44.2 ³	44.2	0.0		
c	5,540 ²	216	442	2.0	46.6	46.6	46.6	0.0		
D	6,775 ²	355	3,152	0.3	52.7	52.7	52.7	0.0		
E	7,660 ²	120	248	2.0	52.7	52.7	52.9	0.2		
F	8,605 ²	70	214	2.3	52.7	52.7	52.9	0.2		
G	10,577 ²	50	213	1.0	52.8	52.8	53.0	0.2		
Н	12,600 ²	95	255	1.6	54.1	54.1	54.3	0.2		
1	13,325 ²	92	406	1.0	58.9	58.9	59.1	0.2		
J	14,575 ²	69	227	1.7	62.3	62.3	62.5	0.2		
К	15,425 ²	18	44	8.9	66.8	66.8	66.8	0.0		

Feet above confluence with Mill Brook No. 2

²Feet above confluence with Green Brook

³Elevation computed without consideration of backwater effects from Green Brook

\triangleright	
Π	MID
Π	(Δ

12

FEDERAL EMERGENCY MANAGEMENT AGENCY

DLESEX COUNTY, NJ (ALL JURISDICTIONS)

FLOODWAY DATA

BONHAMTOWN BROOK – BONYGUTT BROOK

						1			
	FLOODING SOUF	RCE		FLOODWA	Y	v V	BASE F ATER-SURFAC/ FEET N	CE ELEVATION	
	CROSS SECTION	DISTANCE1	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
	A B C D E F G H I J K L M N O P Q	740 2,850 4,080 8,215 9,990 11,100 14,720 15,355 15,715 16,545 17,575 18,285 20,865 21,685 21,685 21,825 23,825 23,825 24,305	1,092 1,112 1,049 1,135 827 859 324 229 320 168 171 300 274 352 355 604 366	8,430 7,339 6,872 5,630 3,880 2,162 2,202 1,851 2,607 1,160 1,569 2,701 1,626 2,378 2,060 4,372 2,375	0.5 0.6 0.7 1.0 1.9 1.6 1.9 1.4 3.1 2.3 1.5 2.5 1.7 2.0 0.9 1.7	42.3 42.4 42.5 43.0 43.2 45.8 51.7 51.9 52.2 52.5 56.0 57.2 57.8 58.1 58.2 60.1 60.1	42.3 42.4 42.5 43.0 43.2 45.8 51.7 51.9 52.2 52.5 56.0 57.2 57.8 58.1 58.2 60.1 60.1	42.5 42.6 42.7 43.2 43.4 45.9 51.9 52.1 52.4 52.7 56.2 57.3 57.9 58.2 58.3 60.2 60.2	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
TABLE	FEDERAL EMERGEN					FLOO	DWAY DA	ТА	
E 12						BOUI	ND BROO	К	

FLOODING SOU	RCE		FLOODWA	Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)			
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Bound Brook (continued)			, ,	, , , , , , , , , , , , , , , , , , , ,				
Ř Í	24,815	490	1,780	2.3	60.5	60.5	60.7	0.2
S	25,355	399	2,811	1.4	60.9	60.9	61.1	0.2
Т	26,205	136	1,091	3.7	61.2	61.2	61.4	0.2
U	26,935	100	827	4.9	61.7	61.7	61.9	0.2
V	27,635	470	2,604	1.6	63.6	63.6	63.8	0.2
W	28,310	599	3,046	1.3	63.8	63.8	64.0	0.2
Х	29,090	315	2,827	1.4	64.0	64.0	64.2	0.2
Y	30,155	1,136	9,287	0.4	64.2	64.2	64.4	0.2
Z	31,570	465	2,427	1.1	64.4	64.4	64.6	0.2
AA	32,805	52	285	9.1	65.1	65.1	65.1	0.0
AB	33,735	500	1,625	1.5	68.7	68.7	68.9	0.2
AC	34,905	780	4,574	0.5	69.3	69.3	69.4	0.1
AD	36,865	490	1,680	1.4	70.3	70.3	70.5	0.2
AE	37,750	397	2,097	1.1	70.7	70.7	70.9	0.2
AF	38,560	571	2,321	1.0	70.9	70.9	71.1	0.2
AG	39,415	1,206	6,087	0.4	71.0	71.0	71.2	0.2
AH	40,385	193	718	2.5	71.0	71.0	71.2	0.2
AI	41,165	1,258	4,869	0.4	71.5	71.5	71.6	0.1
AJ	42,045	1,360	7,790	0.2	71.5	71.5	71.7	0.2
AK	42,795	745	3,866	0.5	71.5	71.5	71.7	0.2
AL	44,545	799	4,088	0.4	71.6	71.6	71.8	0.2
AM	45,245	935	3,951	0.3	71.6	71.6	71.8	0.2
AN	46,240	494	1,697	0.7	71.7	71.7	71.9	0.2
AO	47,385	20	144	8.4	74.3	74.3	74.3	0.0
AP	47,800	350	2,273	0.5	75.8	75.8	75.9	0.1

¹Feet above confluence with Green Brook

TABLE

12

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

BOUND BROOK

						Γ	BASE F			
	FLOODING SOUR	RCE		FLOODWA	Y	v	VATER-SURFAC (FEET N	CE ELEVATION		
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Bou No.	undary Branch Mill Brook			,	,					
	АВСДШҒĞНІЈКІМХОР	45 309 516 1,013 1,464 1,544 1,879 2,462 2,957 3,486 3,651 3,737 3,936 4,025 4,307 4,593	20 25 13 19 28 38 48 17 17 43 21 26 106 109 36 17	53 56 83 71 109 242 195 48 74 148 97 146 353 370 100 50	9.2 8.6 5.8 6.8 4.5 2.0 2.5 10.0 6.5 3.3 5.0 3.3 1.4 1.3 4.9 9.7	44.7 44.7 44.7 45.8 50.5 50.7 54.4 59.9 66.1 66.3 70.8 71.1 71.1 71.1 74.2	$\begin{array}{c} 34.2^2\\ 38.3^2\\ 40.9^2\\ 41.7^2\\ 45.8\\ 50.5\\ 50.7\\ 54.4\\ 59.9\\ 66.1\\ 66.3\\ 70.8\\ 71.1\\ 71.1\\ 71.1\\ 74.2\end{array}$	34.2 38.3 40.9 41.8 45.9 50.5 50.7 54.4 59.9 66.2 66.4 71.0 71.3 71.3 71.3 74.2	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.1\\ 0.1\\ 0.0\\ 0.0\\ 0.0\\$	
	¹ Feet above confluence with Mill Brook No. 1 ² Elevation computed without consideration of backwater effects from Mill Brook No. 1									
TABLE	FEDERAL EMERGENO					FLOOI	DWAY DA	ТА		
.E 12	(ALL JUR		•		BOUND			BROOK	NO. 1	

	FLOODING SOUR	RCE		FLOODWA	Y	v	BASE F VATER-SURFAC (FEET N	CE ELEVATION	
	CROSS SECTION	DISTANCE1	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
¹ Fe	rters Brook A B C D E F G H I J K L M N O P P		262 148 41 156 95 108 77 86 316 ² 30 30 92 28 24 50 38	659 442 125 619 221 191 206 137 85 90 84 86 60 57 82 82 82	1.6 2.3 8.3 1.7 3.4 3.5 3.3 4.9 6.7 6.3 5.9 5.8 8.3 8.8 5.1 5.1	62.3 63.4 70.1 75.1 76.3 79.8 87.4 98.6 109.9 121.5 130.8 142.9 161.7 178.1 193.7 211.7	62.3 63.4 70.1 75.1 76.3 79.8 87.4 98.6 109.9 121.5 130.8 142.9 161.7 178.1 193.7 211.7	62.4 63.5 70.1 75.3 76.4 79.9 87.4 98.6 109.9 121.6 130.9 143.0 161.7 178.1 193.9 211.7	$\begin{array}{c} 0.1 \\ 0.1 \\ 0.0 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.0 \\ 0.2 \\ 0.0 \end{array}$
	FEDERAL EMERGEN			_					
TABLE	MIDDLESE	X COUNT	Y, NJ			FLOOI	DWAY DA	ТА	
Ξ 12	(ALL JURISDICTIONS)					CARTE		ОК	

FLOODING SOUF	RCE	FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)			
CROSS SECTION	DISTANCE1	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Cedar Brook No. 1	1		· · · ·	· · · ·				
А	536	367	2,325	0.5	71.7	71.7	71.9	0.2
В	2,156	90	173	6.8	71.7	71.7	71.9	0.2
c	2,273	221	1,177	1.0	75.5	75.5	75.5	0.0
D	3,653	155	596	2.0	75.7	75.7	75.7	0.0
Ē	3,814	219	857	1.4	76.2	76.2	76.2	0.0
F	5,164	184	371	3.2	76.8	76.8	76.8	0.0
G	5,285	229	921	1.3	80.0	80.0	80.0	0.0
Н	6,735	142	587	2.0	80.5	80.5	80.5	0.0
	8,155	181	679	1.7	81.0	81.0	81.0	0.0
J	8,596	258	1,822	0.6	82.7	82.7	82.7	0.0
ĸ	10,046	197	785	1.5	82.7	82.7	82.7	0.0
L L	11,261	253	905	1.1	83.3	83.3	83.4	0.1
Μ	12,496	53	144	6.9	84.0	84.0	84.1	0.1
N	14,081	306	767	1.3	90.3	90.3	90.4	0.1
0	15,456	215	571	1.4	92.4	92.4	92.5	0.1
P	16,606	144	440	1.8	93.7	93.7	93.8	0.1
Q	17,196	348	1,224	0.7	96.1	96.1	96.2	0.1
R	17,409	295	1,054	0.8	98.1	98.1	98.2	0.1
S	18,504	201	1,454	0.6	98.4	98.4	98.5	0.1
Т	19,783	351	1,423	0.6	99.6	99.6	99.7	0.1
U	20,743	221	864	0.9	99.8	99.8	99.9	0.1
V	21,608	91	484	1.7	100.0	100.0	100.1	0.1
W	22,836	112	270	2.5	102.4	102.4	102.5	0.1
Х	23,146	405	1,315	0.5	104.6	104.6	104.7	0.1
Y	23,686	418	1,358	0.4	105.4	105.4	105.5	0.1
Z	24,571	208	663	0.9	105.5	105.5	105.6	0.1

¹Feet above confluence with Cranbury Brook

TABLE

12

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

CEDAR BROOK NO. 1

						1			
	FLOODING SOUF	RCE		FLOODWA	Y	v v	BASE F ATER-SURFAC (FEET N	CE ELEVATION	
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Cec	dar Brook No. 1 (continued) AA AB AC AD AE AF dar Brook No. 2 A B C D E F G H I J	25,724 ¹ 25,942 ¹ 26,109 ¹ 26,909 ¹ 27,695 ¹ 28,311 ¹ 150,670 ² 152,840 ² 153,810 ² 154,585 ² 155,210 ² 155,960 ² 156,460 ² 157,380 ² 158,140 ²	67 161 234 90 81 54 974 103 358 397 702 254 623 568 927 473	180 349 1,071 242 238 330 3,849 640 1,219 1,581 2,695 1,313 2,686 1,726 1,323 1,543	3.4 1.7 0.4 1.9 2.0 1.2 0.5 3.3 1.7 1.3 0.8 1.6 0.8 1.2 1.6 1.4	106.1 108.4 108.7 108.8 110.8 115.8 64.2 64.2 65.6 66.1 66.3 66.4 67.3 67.5 68.2 70.5	106.1 108.4 108.7 108.8 110.8 115.8 64.2 64.2 65.6 66.1 66.3 66.4 67.3 67.5 68.2 70.5	106.2 108.5 108.8 108.9 110.9 115.8 64.4 65.8 66.3 66.5 66.6 67.4 67.6 68.4 70.6	0.1 0.1 0.1 0.1 0.1 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2
-⊢e	et above mouth of Bound Broo								
TABLE		X COUNT	Y, NJ			FLOO	OWAY DA	ТА	
Ξ 12	(ALL JUNISDIC HUNS)				EDAR B	ROOK NO.	1 – CEDA	AR BROOM	K NO. 2

	FLOODING SOUF	RCE		FLOODWA	Y	v	BASE F VATER-SURFAC (FEET N	CE ELEVATION		
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Ce	dar Brook No. 3			,	0200112)					
	A B C D	84,305 ¹ 84,655 ¹ 85,415 ¹ 86,080 ¹	123 56 24 106	466 165 38 634	0.5 1.5 6.6 0.4	15.9 15.9 17.5 28.9	15.9 15.9 17.5 28.9	16.1 16.1 17.5 28.9	0.2 0.2 0.0 0.0	
	E F G H	87,940 ¹ 90,120 ¹ 92,100 ¹ 92,900 ¹	72 290 156 639	174 115 177 466	1.3 1.2 0.5 0.2	29.0 32.1 33.9 34.1	29.0 32.1 33.9 34.1	29.0 32.2 34.0 34.2	0.0 0.1 0.1 0.1	
	1	93,700 ¹	603	521	0.2	34.1	34.1	34.2	0.1	
Ch	eesequake Creek A	4,565 ²	210	2,535	0.1	12.0	4.6 ⁴	4.8	0.2	
Cle	ear Brook A B C D E F G	1,260 ³ 1,910 ³ 2,056 ³ 2,826 ³ 3,210 ³ 3,398 ³ 3,828 ³	90 203 230 106 148 344 311	166 290 660 325 440 1,803 1,503	2.9 1.7 0.7 1.5 1.1 0.3 0.3	98.2 100.3 104.5 104.7 106.8 109.5 109.5	98.2 100.3 104.5 104.7 106.8 109.5 109.5	98.4 100.3 104.6 104.9 106.8 109.7 109.7	0.2 0.0 0.1 0.2 0.0 0.2 0.2	
	H J K L N	4,498 ³ 4,918 ³ 5,348 ³ 5,504 ³ 5,955 ³ 6,855 ³ 7,110 ³	176 155 109 179 237 41 239	800 557 240 1,098 830 84 588	0.6 0.9 1.6 0.4 0.5 4.6 0.7	110.2 110.2 110.4 117.6 117.6 117.6 123.7	110.2 110.2 110.4 117.6 117.6 117.6 123.7	110.4 110.4 110.6 117.6 117.6 117.6 117.6 123.9	0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.2	
²Fe ³Fe	eet above mouth of Raritan Riv eet above origin of study eet above confluence of Cranbu evation computed without cons	er ury Brook								
TABL	MIDDLESEX COUNTY, NJ					FLOOI	DWAY DA	ТА		
E 12					CEDAR BROOK NO. 3 – CHEESEQUAKE CREEK – CLEAR BROOK					

= 12	(ALL JUR	(ALL JURISDICTIONS				COPPER	MINE BR	OOK	
TABLE	FEDERAL EMERGENCY MANAGEMENT AGENCY					FLOOI	DWAY DA	ТА	
'Fe	eet above confluence with Sout	h Branch Rahway	River						
1-									
	F	2,610	33	136	5.4	59.1	59.1	59.2	0.1
	A B C D E	180 445 1,025 1,720 2,250	30 33 114 46 76	162 156 1,021 303 539	4.5 4.7 0.7 2.4 1.4	40.4 44.4 59.0 59.0 59.1	40.4 44.4 59.0 59.0 59.1	40.6 44.5 59.1 59.0 59.2	0.2 0.1 0.0 0.0 0.1
Со	ppermine Brook	190	(FEET)	(SQUARE FEET)	(FEET PER SECOND)	40.4	FLOODWAY	FLOODWAY	0.2
	CROSS SECTION	DISTANCE ¹	WIDTH	SECTION AREA	MEAN VELOCITY	REGULATORY	WITHOUT	WITH	INCREASE
	FLOODING SOUR	CE		FLOODWA	Y	v	BASE F VATER-SURFAC (FEET N	E ELEVATION	

FLOODING SOURCE			FLOODWA	.Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)				
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Cow Yard Brook	,		1 ,	· · · · ·	· · · · · · · · · · · · · · · · · · ·	,	,		
A	230 ¹	145	102	3.6	92.4	92.4	92.4	0.0	
В	740 ¹	221	192	1.9	95.7	95.7	95.9	0.2	
С	1,428 ¹	356	357	1.0	97.7	97.7	97.7	0.0	
D	1,588 ¹	155	243	1.5	98.3	98.3	98.3	0.0	
E	1,808 ¹	520	510	0.7	100.2	100.2	100.3	0.1	
F	2,378 ¹	245	191	1.9	103.3	103.3	103.4	0.1	
G	2,626 ¹	430	552	0.7	105.5	105.5	105.5	0.0	
Н	3,076 ¹	183	155	2.3	107.1	107.1	107.2	0.1	
Cranbury Brook		1	!		'	1	1 '		
А	1,610 ²	390	2,506	0.6	63.7	63.7	63.8	0.1	
В	3,440 ²	531	3,371	0.4	63.8	63.8	63.9	0.1	
С	3,752 ²	490	4,046	0.4	66.6	66.6	66.6	0.0	
D	5,582 ²	405	2,933	0.5	66.6	66.6	66.6	0.0	
E	7,582 ²	360	2,615	0.6	66.6	66.6	66.6	0.0	
F	8,932 ²	365	2,370	0.6	66.7	66.7	66.7	0.0	
G	10,242 ²	370	1,849	0.8	66.7	66.7	66.7	0.0	
Н	10,357 ²	89	445	3.3	66.7	66.7	66.7	0.0	
I	10,437 ²	315	1,390	1.0	67.0	67.0	67.0	0.0	
J	12,277 ²	185	837	1.7	67.8	67.8	67.8	0.0	
K	14,292 ²	360	1,590	0.9	68.6	68.6	68.8	0.2	
L	15,392 ²	285	1,607	0.9	68.8	68.8	69.0	0.2	
Μ	15,687 ²	320	2,839	0.5	69.4	69.4	69.5	0.1	
Ν	16,089 ²	470	2,360	0.6	70.6	70.6	70.7	0.1	
0	17,149 ²	470	2,446	0.6	70.7	70.7	70.8	0.1	
P	17,919 ²	505	2,471	0.6	70.7	70.7	70.8	0.1	
	'	1	· ·	1	1	1	1 '	1	

¹Feet above confluence with Oakeys Brook ²Feet above confluence with Millstone River

TABLE

12

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

COW YARD BROOK – CRANBURY BROOK

FLOODING SOURCE		FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)				
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Cranbury Brook (continued)			,	,					
Q	18,649	380	2,138	0.6	70.7	70.7	70.8	0.1	
R	19,259	405	1,124	1.1	70.8	70.8	70.9	0.1	
S	19,754	420	2,013	0.6	74.2	74.2	74.2	0.0	
Т	20,814	295	2,217	0.6	74.2	74.2	74.2	0.0	
U	21,392	260	1,273	1.0	74.3	74.3	74.3	0.0	
V	22,372	510	1,978	0.6	74.4	74.4	74.4	0.0	
W	23,307	370	1,282	1.0	74.6	74.6	74.6	0.0	
Х	24,762	290	1,611	0.8	75.1	75.1	75.2	0.1	
Y	25,832	355	1,538	0.8	75.3	75.3	75.4	0.1	
Z	27,862	207	997	1.3	75.6	75.6	75.6	0.0	
AA	29,177	140	715	1.8	76.2	76.2	76.3	0.1	
AB	29,412	275	2,716	0.5	81.0	81.0	81.1	0.1	
AC	30,592	305	2,611	0.5	81.0	81.0	81.1	0.1	
AD	31,882	270	1,305	1.0	81.1	81.1	81.2	0.1	
AE	33,292	75	412	3.1	81.7	81.7	81.8	0.1	
AF	33,629	330	3,615	0.3	89.5	89.5	89.5	0.0	
AG	34,389	380	3,486	0.3	89.5	89.5	89.5	0.0	
AH	35,139	330	3,356	0.3	89.5	89.5	89.5	0.0	
AI	35,479	210	1,163	0.9	89.7	89.7	89.7	0.0	
AJ	36,709	335	1,725	0.6	89.8	89.8	89.8	0.0	
AK	37,959	270	1,338	0.8	89.9	89.9	89.9	0.0	
AL	39,234	345	905	1.2	90.2	90.2	90.2	0.0	
AM	40,354	360	1,353	0.8	90.9	90.9	91.0	0.1	
AN	40,736	285	1,075	1.0	92.5	92.5	92.6	0.1	
AO	41,846	230	634	1.7	93.1	93.1	93.2	0.1	

¹Feet above confluence with Millstone River

TABLE

12

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

CRANBURY BROOK

FLOODING SOURCE			FLOODWA	Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)				
CROSS SECTION	DISTANCE1	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Cranbury Brook (continued) AP AQ AR AS AT AU AV AV AV AZ BA BB BC BD BE BC BD BE BF BG BH BI BI BJ	42,110 42,316 43,661 45,296 46,126 46,262 47,384 48,034 48,038 49,618 51,175 52,035 53,055 53,815 54,945 55,079 55,994 57,174 57,994 59,464 60,987	29 365 310 301 80 45 110 21 40 80 105 135 70 100 175 20 315 145 435 520 540	198 1,486 1,452 1,789 263 500 415 126 193 319 399 590 258 265 304 129 806 232 801 985 886	5.6 0.6 0.5 3.5 1.8 1.6 5.3 3.5 2.1 1.7 1.1 2.0 2.0 1.7 4.1 0.7 2.3 0.7 0.5 0.6	93.6 94.7 94.9 95.2 95.2 96.4 96.9 97.5 97.9 99.6 101.5 101.8 102.0 102.8 104.2 104.5 105.3 106.3 107.6 108.2 109.6	93.6 94.7 94.9 95.2 95.2 96.4 96.9 97.5 97.9 99.6 101.5 101.8 102.0 102.8 104.2 104.5 105.3 106.3 107.6 108.2 109.6	93.8 94.9 95.1 95.4 96.5 97.0 97.6 98.1 99.7 101.7 102.0 102.2 103.0 102.2 103.0 104.4 104.7 105.4 106.4 107.7 108.4 109.7	$\begin{array}{c} 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.1\\ 0.1\\ 0.1\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2$	
Feet above confluence with Mil	Istone River								

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

TABLE

12

CRANBURY BROOK

E F G H I J	8,435 8,990 11,030 11,450 12,160 12,430	40 30 20 20 35 30	157 77 43 118 35	4.3 5.2 9.3 2.5 8.4	15.5 29.5 34.5 37.6 42.8	13.0 15.5 29.5 34.5 37.6 42.8	15.7 29.5 34.5 37.6 42.8	0.1 0.2 0.0 0.0 0.0 0.0
K L	12,705 13,420	20 30	110 20	2.7 4.5	54.0 58.1	54.0 58.1	54.0 58.1	0.0 0.0

	FLOODING SOUR	RCE		FLOODWA	Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)					
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
¹ Fe	ep Run A B C D E F G H I J K L M N O P Q R R	1,800 4,180 6,530 8,035 10,230 11,760 14,665 16,390 18,500 20,525 23,290 26,395 29,150 30,445 31,955 33,875 35,970 38,220	504 769 376 246 333 705 515 462 649 370 197 296 285 193 61 101 229 225 225	1,303 1,577 622 1,212 1,053 2,053 1,440 1,019 1,496 1,023 839 1,080 847 918 301 636 1,390 1,210	1.4 1.2 2.8 1.5 1.8 0.9 1.3 1.8 1.3 1.8 2.2 1.7 2.2 2.0 8.3 3.9 1.8 2.1	9.0 9.0 10.3 13.9 15.2 16.4 18.4 20.0 23.4 27.2 31.9 35.5 38.5 41.2 42.4 47.0 50.8 54.4	$\begin{array}{r} 4.8^2\\ 8.2^2\\ 10.3\\ 13.9\\ 15.2\\ 16.4\\ 18.4\\ 20.0\\ 23.4\\ 27.2\\ 31.9\\ 35.5\\ 38.5\\ 41.2\\ 42.4\\ 47.0\\ 50.8\\ 54.4\end{array}$	5.0 8.4 10.5 14.0 15.3 16.5 18.6 20.2 23.6 27.4 32.0 35.7 38.7 41.4 42.4 47.1 51.0 54.5	$\begin{array}{c} 0.2 \\ 0.2 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.2 \\ 0.1 \end{array}$		
	evation computed without cons										
TABLE	FEDERAL EMERGENCY MANAGEMENT AGENCY MIDDLESEX COUNTY, NJ					FLOO	DWAY DA	TA			
Ξ 12	(ALL JUR	ISDICTIO	NS)			DE	EP RUN				

CROSS SECTION Devils Brook A B	DISTANCE ¹	WIDTH (FEET)	SECTION AREA	MEAN				
A		· · ·	(SQUARE FEET)	VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
			,	,				
В	1,990	260	1,692	0.3	60.6	60.6	60.7	0.1
	2,695	255	1,894	0.8	60.7	60.7	60.8	0.1
С	3,790	105	925	1.7	60.8	60.8	60.9	0.1
D	3,961	180	944	1.6	60.9	60.9	61.0	0.1
E	5,185	98	878	1.7	61.1	61.1	61.2	0.1
F	6,390	140	720	2.1	61.1	61.1	61.2	0.1
G	6,510	168	1,244	1.2	64.8	64.8	65.0	0.2
Н	7,425	177	841	1.8	64.8	64.8	65.0	0.2
	8,577	203	596	2.4	66.1	66.1	66.3	0.2
J	9,597	225	1,976	0.7	71.3	71.3	71.4	0.1
K	10,592	190	1,331	1.1	71.3	71.3	71.4	0.1
L	11,287	95	490	2.9	71.3	71.3	71.4	0.1
М	11,457	143	796	1.8	73.9	73.9	74.0	0.1
N	11,946	535	3,253	0.4	74.1	74.1	74.2	0.1
0	13,291	560	2,937	0.5	74.2	74.2	74.3	0.1
P	16,721	650	2,808	0.3	74.3	74.3	74.4	0.1
Q	18,221	495	919	0.8	74.5	74.5	74.6	0.1
R	20,636	1,730	45,698	0.0	82.6	82.6	82.6	0.0
S	22,151	400	12,338	0.1	82.6	82.6	82.6	0.0
T I	23,606	460	3,703	0.2	82.6	82.6	82.6	0.0
Ŭ	24,406	470	4,233	0.2	82.6	82.6	82.6	0.0
V	25,345	440	4,467	0.2	82.6	82.6	82.6	0.0
W	27,015	320	2,477	0.2	82.6	82.6	82.6	0.0
X	28,085	330	2,163	0.3	82.6	82.6	82.6	0.0
Y	29,020	270	1,472	0.4	82.6	82.6	82.7	0.1
Z	30,200	215	987	0.6	83.7	83.7	83.8	0.1
	ŕ							

¹Feet above confluence with Millstone River

TABLE

12

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

DEVILS BROOK

							BASE F				
	FLOODING SOUF	RCE		FLOODWA	Y	WATER-SURFACE ELEVATION (FEET NAVD)					
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
Dev	vils Brook (continued) AA AB AC AD AE AF AG	31,130 ¹ 31,895 ¹ 32,040 ¹ 33,695 ¹ 34,880 ¹ 36,260 ¹ 37,880 ¹	130 130 165 290 295 500 550	363 124 299 1,471 1,500 1,750 1,642	1.5 4.4 1.8 0.4 0.3 0.3 0.3 0.3	83.9 87.4 90.9 91.8 91.9 91.9 92.0	83.9 87.4 90.9 91.8 91.9 91.9 92.0	84.0 87.4 90.9 91.9 92.1 92.1 92.2	0.1 0.0 0.0 0.1 0.2 0.2 0.2		
	AH	37,880 39,420 ¹	400	1,642	0.3	92.0	92.0	92.2 93.4	0.2		
Div	mal Brook A B C D E F G H I J K L ersion Channel A B	620 ² 1,350 ² 1,750 ² 2,170 ² 2,650 ² 3,400 ² 3,560 ² 3,720 ² 3,767 ² 3,953 ² 2,750 ² 104,900 ³ 105,790 ³	235 235 344 24 28 378 116 70 26 31 85 84 102 18	1,465 1,481 569 87 129 1,039 310 241 115 140 263 213 349 56	0.5 0.4 1.06 6.92 4.68 0.58 1.94 2.50 1.34 1.14 0.61 0.75 1.6 5.1	75.8 75.9 75.9 76.0 76.1 76.3 76.7 79.2 79.2 79.2 79.2 89.3 90.4	75.8 75.8 72.3 ⁴ 72.7 ⁴ 73.9 ⁴ 76.0 76.1 76.3 76.7 79.2 79.2 79.2 79.2 89.3 90.4	75.9 75.9 72.4 72.8 74.1 76.2 76.3 76.5 76.9 79.4 79.4 79.4 79.4 89.3 90.4	0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2		
² Fe ³ Fe	¹ Feet above confluence with Millstone River ² Feet above confluence with Bound Brook ³ Feet above mouth of Raritan River ⁴ Elevation computed without consideration of backwater effects from Bound Brook										
TABLE	FEDERAL EMERGENCY MANAGEMENT AGENCY MIDDLESEX COUNTY, NJ				FLOODWAY DATA						
E 12	(ALL JUF	RISDICTIO	NS)	DEV	DEVILS BROOK – DISMAL BROOK – DIVERSION CHANNEL						

	FLOODING SOUR	CE		FLOODWA	Y	v	BASE FI VATER-SURFAC (FEET N	E ELEVATION	
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
¹ Fee	y's Brook A B C D E F G H I J K L M N O P P		186 154 160 167 170 113 134 119 142 165 92 64 147 55 22 19	271 419 392 572 583 112 633 605 716 1,138 388 92 213 183 57 62	3.3 2.1 2.3 1.6 1.5 4.6 0.8 0.9 0.7 0.5 1.3 5.6 2.4 2.8 9.1 8.3	49.2 49.9 50.5 51.7 51.7 56.1 56.8 56.8 58.1 61.5 61.5 62.1 65.4 69.4 73.0 84.8	49.0 ² 49.9 50.5 51.7 56.1 56.8 56.8 58.1 61.5 62.1 65.4 69.4 73.0 84.8	49.2 50.1 50.7 51.7 56.2 57.0 57.0 58.2 61.5 61.6 62.2 65.5 69.6 73.0 85.0	0.2 0.2 0.0 0.0 0.1 0.2 0.2 0.1 0.0 0.1 0.1 0.1 0.2 0.0 0.2
	FEDERAL EMERGENO		T AGENCY						
TABLE	MIDDLESEX COUNTY, NJ					FLOOD	DWAY DA	TA	
Ξ 12						DOTY	''S BROO	К	

	FLOODING SOUR	CE		FLOODWAY	(v	BASE F VATER-SURFAC (FEET N	E ELEVATION			
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
Gre	at Ditch A B	710 ¹ 1,270 ¹	42 63	76 167	5.0 2.3	71.5 73.4	71.5 73.4	71.7 73.6	0.2 0.2		
	en Brook A B C D E F G H I J K L M N	1,010 ² 3,365 ² 5,695 ² 7,890 ² 11,035 ² 14,150 ² 18,040 ² 20,355 ² 23,095 ² 26,580 ² 28,128 ² 29,012 ² 31,487 ²	$\begin{array}{r} 690^{3}\\ 800^{3}\\ 710^{3}\\ 410^{3}\\ 645^{3}\\ 580^{3}\\ 460^{3}\\ 720^{3}\\ 1,010^{3}\\ 745^{3}\\ 656^{3}\\ 1,435^{3}\\ 2,125^{3}\\ 1,340^{3} \end{array}$	7,628 9,645 6,402 3,691 5,522 4,996 4,412 4,924 7,498 3,713 5,490 9,567 16,812 7,885	1.6 1.1 1.6 2.8 1.9 2.1 2.4 1.8 1.2 2.3 1.5 0.8 0.5 1.0	34.3 34.9 35.3 36.7 38.5 39.0 41.8 43.6 44.5 46.1 51.3 51.9 52.0 52.2	34.3 34.9 35.3 36.7 38.5 39.0 41.8 43.6 44.5 46.1 51.3 51.9 52.0 52.2	34.4 35.1 35.5 36.9 38.6 39.1 42.0 43.8 44.7 46.3 51.4 52.0 52.1 52.3	0.1 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1		
² Fe	¹ Feet above confluence with Lawrence Brook ² Feet above confluence with Raritan River ³ This width extends beyond county boundary										
TABLE	FEDERAL EMERGENO	X COUNT	Y, NJ			FLOOI	DWAY DA	ТА			
E 12	(ALL JUR	ISDICTIO	NS)		GREAT DITCH – GREEN BROOK						

						1			
	FLOODING SOUR	RCE		FLOODWA	Y	v V	BASE F VATER-SURFAC (FEET N	CE ELEVATION	
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
¹ Fe	ards Brook A B C D E F G H I J K L M N O P P	500 1,500 2,100 3,100 3,370 3,960 4,215 4,400 4,760 5,018 5,365 5,748 6,130 6,430 6,950 7,150 7,150	94 105 34 51 53 51 43 100 49 51 26 28 28 20 18 00 18	520 486 179 118 119 135 131 113 499 374 266 83 90 68 78 69	2.4 2.5 6.9 9.1 9.0 7.9 8.2 9.5 2.1 2.9 4.0 7.4 6.9 9.1 8.0 9.0	8.6 8.6 9.5 12.5 13.9 14.4 16.6 24.0 24.0 24.1 24.7 30.6 31.6 36.8 39.1	5.2^2 5.4^2 9.5 12.5 13.9 14.4 16.6 24.0 24.1 24.7 30.6 31.6 36.8 39.1	5.2 5.4 9.5 12.5 14.1 14.5 16.6 24.0 24.0 24.3 24.7 30.6 31.6 37.0 39.1	0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TABLE						FLOO	DWAY DA	ТА	
_E 12						HEAR	DS BROC	Ж	

FLOODING SOUF	RCE		FLOODWA	Y	v	BASE F ATER-SURFAC (FEET N	E ELEVATION	
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Heathcote Brook			,					
A	2,982	360	1,575	2.1	56.2	56.2	56.2	0.0
В	3,239	330	841	3.9	56.2	56.2	56.2	0.0
С	3,356	300	662	5.0	56.5	56.5	56.5	0.0
D	3,451	290	1,393	2.4	56.8	56.8	56.8	0.0
E	4,831	290	1,262	2.6	58.4	58.4	58.5	0.1
F	5,016	320	1,473	2.2	59.6	59.6	59.6	0.0
G	6,336	330	1,547	2.1	61.1	61.1	61.2	0.1
н	7,176	420	1,407	2.3	62.2	62.2	62.3	0.1
	8,153	420	1,840	1.3	64.2	64.2	64.2	0.0
J	9,588	330	1,510	1.6	65.0	65.0	65.1	0.1
К	10,808	445	1,880	1.3	65.7	65.7	65.9	0.2
L	12,173	480	1,899	1.3	67.3	67.3	67.5	0.2
М	12,378	540	1,175	2.0	67.5	67.5	67.7	0.2
N	12,549	650	3,033	0.8	70.1	70.1	70.1	0.0
0	13,744	650	3,444	0.7	70.4	70.4	70.5	0.1
Р	14,824	620	3,239	0.8	70.7	70.7	70.9	0.2
Q	16,014	570	2,043	0.8	71.1	71.1	71.3	0.2
R	16,305	530	2,091	0.8	71.3	71.3	71.5	0.2
S	17,605	505	1,747	0.9	72.0	72.0	72.2	0.2
т	18,925	320	892	1.8	73.1	73.1	73.2	0.1
U	20,159	195	850	1.9	76.1	76.1	76.3	0.2
V	20,539	180	673	2.4	76.8	76.8	77.0	0.2
W	21,124	600	2,958	0.6	77.4	77.4	77.6	0.2
Х	23,704	461	1,442	0.4	79.5	79.5	79.7	0.2
Y	24,314	38	75	8.0	80.6	80.6	80.6	0.0
Z	24,776	55	90	6.6	101.9	101.9	101.9	0.0

TABLE

12

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

HEATHCOTE BROOK

			1						
	FLOODING SOUR	CE		FLOODWA	Y	v	BASE F VATER-SURFAC (FEET N	CE ELEVATION	
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Hea	athcote Brook (continued) AA AB AC AD AE AF AG AH AI AJ AK athcote Brook Branch A B B		91 143 180 200 97 110 61 57 45 21 184 389 203	138 311 309 597 186 113 147 85 100 61 1,109 859 260	4.3 1.9 1.9 1.0 3.2 5.2 4.0 7.0 6.0 9.7 0.5 0.9 2.9	115.5 119.2 121.0 123.2 124.2 141.6 145.9 156.2 162.9 171.3 180.3 71.0 74.0	115.5 119.2 121.0 123.2 124.2 141.6 145.9 156.2 162.9 171.3 180.3 71.0 74.0	115.7 119.3 121.1 123.2 124.4 141.6 146.1 156.2 163.0 171.3 180.3 71.2 74.1	0.2 0.1 0.1 0.0 0.2 0.0 0.2 0.0 0.1 0.0 0.0 0.2 0.1
TABLE	FEDERAL EMERGENCY MANAGEMENT AGENCY MIDDLESEX COUNTY, NJ					FLOOI	DWAY DA	ТА	
Ξ 12				н	EATHCOT	E BROOK – I	HEATHCOT	E BROOK	BRANCH

		Γ			I			
						BASE F		
FLOODING SOUR	CE		FLOODWA	Y	V	VATER-SURFAC		
						(FEET N	IAVD)	
			SECTION	MEAN				
CROSS SECTION	DISTANCE ¹	WIDTH	AREA	VELOCITY	REGULATORY	WITHOUT	WITH	INCREASE
		(FEET)	(SQUARE	(FEET PER		FLOODWAY	FLOODWAY	
			FEET)	SECOND)				
Ireland Brook								
A	97,950	716	3,277	0.3	53.7	53.7	53.9	0.2
В	98,060	125	346	2.7	54.7	54.7	54.7	0.0
С	99,470	170	270	3.4	58.3	58.3	58.3	0.0
D	101,640	240	604	1.5	63.7	63.7	63.8	0.1
E	101,725	274	941	1.0	64.5	64.5	64.6	0.1
F	103,310	258	705	1.3	65.3	65.3	65.5	0.2
G	105,035	158	444	2.1	67.2	67.2	67.4	0.2
Н	106,250	393	1,047	0.9	68.7	68.7	68.9	0.2
I	107,160	276	721	4.9	69.3	69.3	69.5	0.2
J	107,285	220	723	3.6	69.8	69.8	69.9	0.1
K	107,990	210	663	4.2	70.7	70.7	70.9	0.2
L	109,105	275	713	4.5	72.6	72.6	72.8	0.2
Μ	109,880	335	1,069	2.7	73.3	73.3	73.4	0.1
N	109,990	320	1,102	2.5	73.7	73.7	73.7	0.0
0	110,995	275	914	3.1	74.0	74.0	74.1	0.1
Р	111,675	496	4,961	0.2	74.3	74.3	74.5	0.2
Q	112,165	22	80	11.2	74.4	74.4	74.5	0.1
R	112,495	440	1,842	0.5	79.8	79.8	79.8	0.0
S	113,320	290	1,041	0.8	79.9	79.9	79.9	0.0
Т	113,915	123	485	1.8	80.0	80.0	80.1	0.1
U	114,020	145	699	1.2	81.8	81.8	81.8	0.0
V	115,450	340	1,703	0.5	82.1	82.1	82.2	0.1
W	116,450	180	459	1.8	82.2	82.2	82.4	0.2
Х	117,855	120	356	2.3	85.1	85.1	85.3	0.2
Y	118,945	195	542	1.5	87.4	87.4	87.6	0.2
Z	119,071	125	640	1.2	90.7	90.7	90.7	0.0
AA	119,775	175	764	1.0	90.8	90.8	90.8	0.0
AB	120,785	28	102	7.1	90.8	90.8	90.8	0.0

TABLE

12

FEDERAL EMERGENCY MANAGEMENT AGENCY

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

FLOODWAY DATA

IRELAND BROOK

	FLOODING SOUR	CE		FLOODWA	Y	v	BASE FI VATER-SURFAC (FEET N	E ELEVATION	
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
	sick Brook A B C D E F G H I J K L M N O O	450 1,555 2,335 3,105 4,165 4,910 5,305 6,050 6,465 7,280 7,995 9,140 10,165 10,920 11,855 ernal Lake	122 97 23 94 24 24 37 31 22 16 91 125 58 92	996 192 69 76 244 100 104 158 143 120 82 175 278 156 232	0.6 2.4 6.6 6.0 1.9 4.6 4.4 2.9 3.2 3.8 5.5 2.6 1.6 2.9 2.0	15.5 15.5 16.1 17.8 23.0 23.5 24.0 26.4 26.5 30.3 31.2 35.1 39.0 41.2 45.1	15.5 15.5 16.1 17.8 23.0 23.5 24.0 26.4 26.5 30.3 31.2 35.1 39.0 41.2 45.1	15.7 15.7 16.3 17.9 23.1 23.6 24.2 26.4 26.5 30.4 31.4 35.3 39.1 41.4 45.3	$\begin{array}{c} 0.2 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.2 \\ 0.0 \\ 0.0 \\ 0.1 \\ 0.2 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.2 \end{array}$
TABLE	FEDERAL EMERGENO	X COUNT	Y, NJ			FLOOE	DWAY DA	ТА	
E 12						IRESI	CK BROC	РК	

FLOODING SOU	RCE		FLOODWA	Y	v	BASE F VATER-SURFAC (FEET N	E ELEVATION	
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Lawrence Brook								
А	53,210	550	4,163	1.3	11.4	9.3 ²	9.5	0.2
В	55,005	380	3,339	1.7	11.4	9.5 ²	9.7	0.2
С	55,740	220	1,408	4.0	11.4	9.5 ²	9.7	0.2
D	55,975	238	1,974	2.8	11.4	10.0 ²	10.1	0.1
E	56,675	325	2,931	1.9	11.4	10.3 ²	10.5	0.2
F	57,660	107	1,264	4.4	11.4	10.5 ²	10.7	0.2
G	58,350	342	2,477	2.3	11.4	11.0 ²	11.1	0.1
Н	58,785	204	1,734	3.2	11.4	11.1 ²	11.2	0.1
1	58,865	170	914	6.1	11.4	11.1 ²	11.2	0.1
J	58,935	175	1,836	3.0	11.6	11.6	11.8	0.2
К	59,030	225	3,446	1.6	20.3	20.3	20.3	0.0
L	59,110	236	2,955	1.9	20.3	20.3	20.3	0.0
Μ	59,250	247	4,118	1.4	20.4	20.4	20.4	0.0
Ν	59,550	221	3,268	1.7	20.4	20.4	20.4	0.0
0	59,650	224	4,061	1.4	23.9	23.9	23.9	0.0
Р	61,330	227	4,061	1.4	24.0	24.0	24.0	0.0
Q	63,235	258	3,741	1.5	24.0	24.0	24.0	0.0
R	65,710	428	4,674	1.2	24.1	24.1	24.1	0.0
S	67,380	419	3,041	1.8	24.2	24.2	24.2	0.0
т	67,515	455	3,467	1.6	25.6	25.6	25.6	0.0
U	69,090	355	3,634	1.5	25.7	25.7	25.7	0.0
V	70,465	414	3,542	1.5	25.8	25.8	25.8	0.0
W	71,690	505	5,020	1.0	25.9	25.9	25.9	0.0
Х	72,355	340	4,720	1.1	25.9	25.9	25.9	0.0
Y	72,460	670	4,835	1.1	26.1	26.1	26.1	0.0
Z	73,580	485	3,800	1.3	26.2	26.2	26.2	0.0

TABLE

12

²Elevation computed without consideration of backwater effects from Raritan River

FEDERAL	EMERGENCY	MANAGEMENT	AGENCY

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

FLOODWAY DATA

LAWRENCE BROOK

FLOODING SOUF	RCE		FLOODWA	ر ۲۲	V	BASE FI VATER-SURFAC (FEET N	CE ELEVATION	
CROSS SECTION	DISTANCE1	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Lawrence Brook (continued)	1 '		·	, ,	, t		, ,	í
AA	74,720	220	1,520	3.4	26.4	26.4	26.4	0.0
AB	74,980	220	1,030	5.0	26.4	26.4	26.4	0.0
AC	75,050	230	1,130	4.5	27.1	27.1	27.1	0.0
AD	75,155	255	2,115	2.4	27.4	27.4	27.5	0.1
AE	75,300	310	1,900	2.7	28.4	28.4	28.4	0.0
AF	76,090	325	2,165	2.3	28.7	28.7	28.7	0.0
AG	77,355	340	1,165	4.2	29.1	29.1	29.1	0.0
AH	78,590	250	1,595	3.1	31.2	31.2	31.3	0.1
AI	78,880	340	1,140	4.3	31.2	31.2	31.4	0.2
AJ	78,960	290	1,020	4.8	33.9	33.9	34.0	0.1
AK	79,980	405	3,232	1.5	34.8	34.8	34.9	0.1
AL	80,675	375	3,305	1.5	35.0	35.0	35.1	0.1
AM	81,160	444	3,487	1.4	35.1	35.1	35.2	0.1
AN	81,230	524	11,000	0.4	51.8	51.8	51.8	0.0
AO	85,555	864	10,000	0.5	51.8	51.8	51.8	0.0
AP	87,270	610	8,419	0.6	51.8	51.8	51.8	0.0
AQ	87,630	472	5,996	0.8	51.8	51.8	51.8	0.0
AR	87,750	480	4,154	1.2	51.8	51.8	51.8	0.0
AS	87,860	497	6,365	0.8	52.3	52.3	52.3	0.0
AT	89,600	467	6,564	0.7	52.3	52.3	52.3	0.0
AU	92,740	451	5,795	0.8	52.4	52.4	52.4	0.0
AV	94,840	405	3,167	1.4	52.4	52.4	52.4	0.0
AW	94,950	400	3,574	1.3	53.5	53.5	53.5	0.0
AX	96,020	350	3,609	1.2	53.6	53.6	53.6	0.0
AY	98,080	385	2,900	1.5	53.7	53.7	53.7	0.0
AZ	98,945	257	1,895	2.0	53.8	53.8	53.8	0.0

TABLE

12

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

LAWRENCE BROOK

FLOODING SOUR	₹CE		FLOODWA	Y	v	BASE F VATER-SURFAC (FEET N	CE ELEVATION	
CROSS SECTION	DISTANCE1	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Lawrence Brook (continued)	· · · · · · · · · · · · · · · · · · ·	[, · · · · ·		· · · · · · · · · · · · · · · · · · ·		, ,	
BA	99,990	243	1,730	1.4	54.0	54.0	54.0	0.0
BB	100,240	158	972	2.5	54.0	54.0	54.0	0.0
BC	100,479	116	732	3.3	56.0	56.0	56.0	0.0
BD	101,249	215	1,039	2.3	56.5	56.5	56.5	0.0
BE	102,349	137	698	3.5	56.9	56.9	56.9	0.0
BF	102,562	260	556	4.3	57.7	57.7	57.7	0.0
BG	102,673	429	3,352	0.7	63.4	63.4	63.4	0.0
ВН	104,538	355	2,775	0.9	63.5	63.5	63.5	0.0
BI	106,053	123	610	3.8	63.5	63.5	63.5	0.0
BJ	106,306	140	490	4.8	64.0	64.0	64.0	0.0
BK	107,456	270	1,321	1.7	65.2	65.2	65.3	0.1
BL	107,720	240	1,044	2.1	65.9	65.9	65.9	0.0
BM	109,045	250	1,121	2.0	66.8	66.8	66.8	0.0
BN	110,110	230	1,015	2.2	67.7	67.7	67.7	0.0
BO	111,510	390	913	1.2	68.8	68.8	69.0	0.2
BP	111,730	230	1,125	0.9	70.5	70.5	70.6	0.1
BQ	112,153	460	1,361	0.6	70.8	70.8	70.9	0.1
BR	113,305	106	118	7.0	71.3	71.3	71.3	0.0
BS	114,465	300	628	1.3	74.1	74.1	74.1	0.0
BT	115,815	247	343	2.4	75.6	75.6	75.6	0.0
BU	116,370	121	267	3.1	76.7	76.7	76.7	0.0
BV	117,050	170	686	0.5	77.9	77.9	77.9	0.0
BW	117,631	90	509	0.7	79.7	79.7	79.7	0.0
BX	118,841	231	1,359	0.3	79.7	79.7	79.8	0.1
BY	120,421	163	1,342	0.3	79.7	79.7	79.8	0.1
BZ	121,981	59	211	1.7	79.8	79.8	79.9	0.1
		1						

TABLE

12

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

LAWRENCE BROOK

FLOODING SOUR	RCE		FLOODWA	, .Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)			
CROSS SECTION	DISTANCE1	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Lawrence Brook (continued) CA CB CC CD CE Mae Brook A B C D E F G H I J K L	122,451 122,829 123,712 124,612 125,512 97,730 99,140 101,090 101,350 101,440 102,180 103,620 104,540 105,830 105,930 106,600 107,670	16 29 660 738 1,013 123 80 45 44 71 88 95 45 120 100 89 436	73 33 1,873 1,872 2,846 618 144 115 94 208 158 230 83 162 204 171 434	0.8 1.8 0.1 0.1 0.1 1.3 5.4 5.0 6.1 2.7 3.6 1.7 4.2 2.2 1.7 2.0 0.7	79.8 80.5 81.2 81.2 81.2 53.6 58.4 71.8 72.9 74.6 77.8 85.5 89.8 100.4 100.9 102.2 105.5	79.8 80.5 81.2 81.2 53.6 58.4 71.8 72.9 74.6 77.8 85.5 89.8 100.4 100.9 102.2 105.5	80.0 80.7 81.4 81.4 53.8 58.4 71.8 73.0 74.6 77.8 85.7 89.8 100.4 100.9 102.4 105.7	0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0

TABLE

12

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

LAWRENCE BROOK – MAE BROOK

FLOODING SOU	RCE		FLOODWA	.Y	v	BASE FI NATER-SURFAC (FEET N	CE ELEVATION	
CROSS SECTION	DISTANCE1	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Manalapan Brook	1	1	· · · ·	· ['	,		,	1
A	82,390	405	1,160	2.0	14.5	14.5	14.6	0.1
В	83,005	210	1,082	2.1	14.8	14.8	14.9	0.1
С	83,360	341	1,375	1.7	15.0	15.0	15.1	0.1
D	83,405	329	954	2.4	15.0	15.0	15.1	0.1
E	84,100	122	604	3.8	15.4	15.4	15.5	0.1
F	84,180	193	662	3.4	15.8	15.8	16.0	0.2
G	84,605	222	2,216	1.0	16.2	16.2	16.3	0.1
H	84,730	639	5,290	0.4	20.4	20.4	20.4	0.0
I	86,290	712	2,396	0.9	20.4	20.4	20.4	0.0
J	87,495	370	1,423	1.6	20.6	20.6	20.6	0.0
K	88,835	525	2,275	1.0	21.0	21.0	21.1	0.1
L	90,045	444	1,469	1.5	21.4	21.4	21.5	0.1
M	91,695	538	1,705	1.3	22.2	22.2	22.3	0.1
N	93,490	164	642	3.5	23.0	23.0	23.1	0.1
0	93,568	53	325	6.8	23.1	23.1	23.1	0.0
P	94,190	395	1,515	1.5	24.0	24.0	24.1	0.1
Q	95,010	550	1,527	1.4	24.7	24.7	24.9	0.2
R	96,330	689	1,989	1.1	25.9	25.9	26.1	0.2
S	96,880	620	2,189	1.0	26.3	26.3	26.4	0.1
Т	97,580	751	3,054	0.7	26.6	26.6	26.7	0.1
Ŭ	97,823	387	1,287	1.7	27.4	27.4	27.5	0.1
V	98,623	697	1,610	1.3	28.0	28.0	28.1	0.1
Ŵ	99,673	930	4,311	0.5	28.2	28.2	28.3	0.1
X	100,673	441	1,610	1.3	28.4	28.4	28.5	0.1
Y	101,693	354	1,291	0.5	29.4	29.4	29.5	0.1
Z	102,323	224	847	2.5	30.4	30.4	30.5	0.1

TABLE

12

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

MANALAPAN BROOK

FLOODING SOUF	RCE		FLOODWA	Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)			
CROSS SECTION	DISTANCE1	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Manalapan Brook (continued)			, ,	,,				
AA Č	103,293	272	1,412	1.5	31.7	31.7	31.8	0.1
AB	103,973	406	1,815	1.2	32.1	32.1	32.2	0.1
AC	104,593	113	227	9.5	32.9	32.9	32.9	0.0
AD	104,763	434	1,136	1.9	35.1	35.1	35.1	0.0
AE	104,913	729	2,025	1.1	35.4	35.4	35.4	0.0
AF	105,113	800	3,622	0.6	35.5	35.5	35.6	0.1
AG	106,743	584	3,604	0.6	35.6	35.6	35.8	0.2
AH	107,183	810	3,177	0.7	35.6	35.6	35.8	0.2
AI	107,673	853	2,393	0.8	35.8	35.8	36.0	0.2
AJ	108,223	439	1,212	1.7	36.1	36.1	36.3	0.2
AK	108,843	453	1,747	1.2	36.8	36.8	36.9	0.1
AL	110,073	796	1,230	1.6	38.2	38.2	38.3	0.1
AM	111,143	299	1,108	1.8	40.0	40.0	40.2	0.2
AN	112,403	463	1,755	1.1	41.3	41.3	41.5	0.2
AO	112,983	444	1,583	1.2	41.7	41.7	41.9	0.2
AP	113,133	281	974	2.0	41.8	41.8	42.0	0.2
AQ	113,563	499	934	2.1	42.3	42.3	42.5	0.2
AR	114,238	398	1,686	1.2	42.8	42.8	42.9	0.1
AS	114,928	194	918	2.1	43.2	43.2	43.3	0.1
AT	115,600	300	1,487	1.3	43.7	43.7	43.9	0.2
AU	116,000	60	278	7.1	43.7	43.7	43.9	0.2
AV	116,222	68	431	4.6	45.6	45.6	45.7	0.1
AW	116,755	910	7,057	0.3	51.9	51.9	51.9	0.0
AX	118,005	740	4,935	0.4	51.9	51.9	51.9	0.0
AY	118,435	460	2,793	0.7	51.9	51.9	51.9	0.0
AZ	118,815	420	3,141	0.6	52.0	52.0	52.0	0.0

TABLE

12

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

MANALAPAN BROOK

FLOODING SOUR	₹CE	FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)			
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Manalapan Brook (continued)	· · · · · ·	[· · · · ·	· · · ·	1			
BA	119,645	577	3,847	0.5	52.0	52.0	52.0	0.0
BB	121,176	718	1,664	1.1	52.0	52.0	52.0	0.0
BC	121,796	635	2,134	0.8	52.2	52.2	52.2	0.0
BD	122,226	268	983	1.8	52.3	52.3	52.3	0.0
BE	122,466	110	665	2.7	53.0	53.0	53.0	0.0
BF	123,436	508	2,637	0.7	53.5	53.5	53.5	0.0
BG	124,516	517	2,464	0.7	53.7	53.7	53.7	0.0
ВН	125,306	450	826	2.2	54.0	54.0	54.1	0.1
BI	126,166	290	789	2.3	55.9	55.9	55.9	0.0
BJ	126,479	96	322	5.4	56.2	56.2	56.2	0.0
ВК	127,289	306	1,009	1.8	58.2	58.2	58.3	0.1
BL	128,099	178	643	2.8	59.1	59.1	59.1	0.0
BM	128,327	266	918	1.9	60.4	60.4	60.4	0.0
BN	128,652	128	641	2.8	60.8	60.8	60.8	0.0
во	128,917	66	376	4.7	61.0	61.0	61.0	0.0
BP	129,877	277	1,520	1.2	62.0	62.0	62.1	0.1
BQ	130,557	367	1,393	1.3	62.2	62.2	62.3	0.1
BR	131,437	413	1,914	0.9	62.6	62.6	62.7	0.1
BS	132,327	499	1,806	1.0	62.9	62.9	63.0	0.1
BT	132,937	489	1,303	1.4	63.2	63.2	63.3	0.1
BU	133,647	417	1,621	1.1	63.6	63.6	63.7	0.1
BV	134,077	518	1,537	1.2	63.8	63.8	63.9	0.1
BW	134,807	510	2,102	0.8	64.1	64.1	64.2	0.1
BX	135,377	380	1,832	1.0	64.2	64.2	64.3	0.1
BY	135,566	348	1,910	0.9	64.7	64.7	64.7	0.0
BZ	136,156	519	1,118	1.5	64.8	64.8	64.8	0.0

TABLE

12

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

MANALAPAN BROOK

FLOODING SOUR	≷CE		FLOODWAY	Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)			
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Manalapan Brook (continued) CA CB CC CD CE CF CG CH CI CJ CK CL CM CN CN CO CP	136,976 ¹ 137,886 ¹ 138,816 ¹ 139,976 ¹ 140,259 ¹ 140,259 ¹ 142,089 ¹ 142,089 ¹ 142,904 ¹ 143,779 ¹ 145,174 ¹ 145,429 ¹ 146,449 ¹ 147,249 ¹ 147,709 ¹ 148,149 ¹	560 560 489 440 290 330 346 471 505 443 612 710 369 521 583 1,224	1,724 1,793 1,742 1,706 1,104 1,259 875 1,582 1,883 879 2,180 2,148 1,436 1,056 1,801 3,617	1.0 1.0 1.0 1.0 1.6 1.4 2.0 1.1 0.9 1.9 0.8 0.8 1.2 1.6 0.9 0.5	65.8 66.3 66.9 67.2 67.6 68.4 69.4 70.7 71.2 71.9 73.3 74.2 74.7 75.5 76.0 76.1	65.8 66.3 66.9 67.2 67.6 68.4 69.4 70.7 71.2 71.9 73.3 74.2 74.7 75.5 76.0 76.1	65.8 66.3 67.0 67.3 67.7 68.5 69.4 70.8 71.3 72.1 73.5 74.4 74.9 75.6 76.1 76.2	0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1
Matawan Creek A B C D	19,674 ² 19,907 ² 22,229 ² 23,026 ²	333 ³ 402 ³ 286 ³ 179 ³	2,488 3,273 302 411	1.0 0.6 4.4 3.2	18.9 18.9 19.1 24.4	18.9 18.9 19.1 24.4	19.0 19.0 19.3 24.6	0.1 0.1 0.2 0.2

^{*}Feet above mouth

TABLE

12

³This width extends beyond county boundary

FEDERAL	EMERGENCY	MANAGEMENT	AGENCY

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

FLOODWAY DATA

MANALAPAN BROOK – MATAWAN CREEK

FLOODING SOUF	RCE		FLOODWA	Y	V	BASE F ATER-SURFAC (FEET N	E ELEVATION	
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Matchaponix Brook			í í					
A	82,200	1,432	6,804	0.5	14.2	14.2	14.4	0.2
В	82,800	403	931	3.9	14.2	14.2	14.4	0.2
С	82,880	485	1,356	2.7	14.7	14.7	14.8	0.1
D	84,075	660	3,215	1.1	15.7	15.7	15.7	0.0
E	86,155	418	1,368	2.7	16.6	16.6	16.7	0.1
F	86,405	1,120	4,466	0.8	17.4	17.4	17.4	0.0
G	87,655	1,280	4,768	0.8	17.9	17.9	18.0	0.1
Н	88,460	920	4,584	0.8	18.6	18.6	18.8	0.2
1	89,450	1,030	3,578	1.0	19.3	19.3	19.4	0.1
J	91,750	450	1,706	2.1	21.2	21.2	21.3	0.1
К	93,460	540	2,413	1.5	24.8	24.8	24.9	0.1
L	95,450	470	2,442	1.5	25.8	25.8	25.9	0.1
M	97,020	1,123	4,824	0.8	26.9	26.9	27.0	0.1
N	98,240	1,300	5,275	0.7	27.5	27.5	27.6	0.1
0	99,600	640	3,030	1.2	28.2	28.2	28.4	0.2
Р	101,150	800	3,866	0.9	29.6	29.6	29.8	0.2
Q	102,940	600	3,013	1.2	30.6	30.6	30.8	0.2
R	104,310	487	2,551	1.4	31.6	31.6	31.8	0.2
S	104,390	580	2,886	1.2	32.3	32.3	32.5	0.2
Т	106,620	904	2,764	1.2	34.1	34.1	34.2	0.1
U U	108,900	534	2,174	1.5	35.8	35.8	35.9	0.1
V	111,650	510	2,149	1.5	37.2	37.2	37.4	0.2
W	112,780	675	2,754	1.1	38.1	38.1	38.3	0.2
X	114,530	254	791	4.0	39.7	39.7	39.8	0.1
Y	115,745	89	592	5.3	42.6	42.6	42.6	0.0
Z	115,815	197	1,131	2.8	43.6	43.6	43.6	0.0

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

TABLE 12

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

MATCHAPONIX BROOK

							BASE F	LOOD	
	FLOODING SOUR	CE		FLOODWA	ſ	V	VATER-SURFAC (FEET N		
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Me	tchaponix Brook (continued) AA AB AC AD AE AF AG AH AI AJ Ilins Creek A B C	117,435 ¹ 118,925 ¹ 121,595 ¹ 123,165 ¹ 124,040 ¹ 125,740 ¹ 127,750 ¹ 128,720 ¹ 128,990 ¹ 130,110 ¹ 6,340 ² 6,640 ² 9,080 ²	208 283 500 960 1,070 1,027 958 440 420 480 130 190 20	1,189 2,151 2,390 4,486 4,554 4,576 4,772 1,591 2,468 2,864 1,570 1,730 180	2.6 1.4 1.3 0.7 0.7 0.6 1.9 1.2 1.0 0.1 0.1 0.7	45.6 46.9 47.7 48.8 50.8 51.2 51.8 52.6 53.3 53.9 11.0 11.0 11.0	$ \begin{array}{r} 45.6\\ 46.9\\ 47.7\\ 48.8\\ 50.8\\ 51.2\\ 51.8\\ 52.6\\ 53.3\\ 53.9\\ 4.6^3\\ 4.6^3\\ 4.6^3\\ 4.6^3\\ \end{array} $	45.6 46.9 47.8 48.9 50.8 51.3 52.0 52.7 53.3 54.0 4.8 4.8 4.8 4.8	0.0 0.1 0.1 0.0 0.1 0.2 0.1 0.0 0.1 0.2 0.2 0.2 0.2
	evation computed without cons			rom Raritan Bay	y				
TABLE	MIDDLESEX COUNTY, NJ					FLOO	DWAY DA	ТА	
Ξ 12					MATCHAPONIX BROOK – MELLINS CREEK				

FLOODING SOUR	۶CE		FLOODWA	۲. ۲	v	BASE FI VATER-SURFAC (FEET N	CE ELEVATION	
CROSS SECTION	DISTANCE1	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Mile Run	,	· · · · · · · · · · · · · · · · · · ·	· · · · ·	,	· · · ·	[,	
A	77,750	174/105 ²	2,197	1.0	19.8	19.8	20.0	0.2
В	78,460	172/57 ²	1,833	1.2	19.9	19.9	20.1	0.2
С	78,695	84/72 ²	870	2.5	20.1	20.1	20.3	0.2
D	78,895	97/60 ²	1,228	1.8	21.7	21.7	21.9	0.2
E	79,630	80/37 ²	786	2.8	21.8	21.8	22.0	0.2
F	80,690	35/7 ²	325	5.3	22.3	22.3	22.4	0.1
G	82,135	29/7 ²	178	9.6	24.3	24.3	24.5	0.2
Н	82,910	45/22 ²	239	6.9	29.8	29.8	29.9	0.1
· · · · · · · · · · · · · · · · · · ·	83,170	66/37 ²	463	3.5	35.3	35.3	35.3	0.0
J ,	83,755	46/23 ²	210	7.8	35.5	35.5	35.5	0.0
К	85,000	29/10 ²	167	9.8	43.2	43.2	43.2	0.0
L '	85,190	63	598	2.7	48.3	48.3	48.3	0.0
М	85,370	40	275	6.0	48.3	48.3	48.3	0.0
Ν	85,600	50	651	2.5	50.5	50.5	50.6	0.1
0	85,725	50	594	2.8	50.5	50.5	50.5	0.0
Р	86,245	50	320	5.1	50.5	50.5	50.5	0.0
Q	86,835	50	475	3.5	51.5	51.5	51.7	0.2
R	86,974	40	464	3.2	51.9	51.9	52.1	0.2
S	87,270	35	300	4.9	52.0	52.0	52.1	0.1
Т ,	87,400	45	603	2.4	56.3	56.3	56.4	0.1
U	87,700	65	487	3.0	56.3	56.3	56.4	0.1
V	87,790	100	535	2.8	56.4	56.4	56.6	0.2
W	87,890	100	531	2.8	56.6	56.6	56.6	0.0
Х	87,981	150	649	2.3	56.7	56.7	56.8	0.1
Y	88,110	170	829	1.8	56.7	56.7	56.9	0.2
Z	88,320	148	691	2.1	56.8	56.8	57.0	0.2
	'	1 '	1	1		1	1 '	1
,	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	1

²Width/width within county boundary

TABLE

12

FEDERAL	EMERGENCY	MANAGEMENT	AGENCY

FLOODWAY DATA

MILE RUN

	FLOODING SOUR	RCE		FLOODWA	Y	V	BASE F VATER-SURFAC (FEET N	E ELEVATION		
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
	e Run (continued) AA AB AC AD AE AF AG AH AI AJ AK AL AM AN AO	88,440 88,590 88,950 89,260 89,725 90,890 91,355 91,840 92,260 92,655 92,745 93,770 93,985 94,385 94,385 94,480	94 95 95 95 60 60 60 37 50 40 45 40 40 40	520 445 1,095 956 896 529 462 284 202 189 251 111 247 112 151	2.8 2.7 1.1 1.3 1.4 1.2 1.4 2.2 3.1 3.3 2.5 5.7 2.3 5.0 3.7	56.8 56.9 63.8 63.9 70.4 70.5 70.6 72.3 73.1 75.7 80.2 84.1 84.2 86.2	56.8 56.9 63.8 63.9 70.4 70.5 70.6 72.3 73.1 75.7 80.2 84.1 84.2 86.2	57.0 57.1 64.0 64.1 70.4 70.5 70.7 72.3 73.1 75.7 80.2 84.1 84.4 86.2	0.2 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0	
			TACENCY							
TABLE	FEDERAL EMERGENO	X COUNT	Y, NJ		FLOODWAY DATA					
ALL JURISDICTIONS)					МІ	LE RUN				

						1					
	FLOODING SOUF	RCE		FLOODWA	Y	v.	BASE F VATER-SURFAC (FEET N	CE ELEVATION			
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
Mill	I Brook No. 1 A B C D E F G H I Brook No. 2 A B C D E F G	1,013 1600 2373 2976 3286 3742 4200 4979 14,935 15,265 15,760 16,402 16,775 16,880 17,145	81 68 70 30 19 23 70 87 100 31 32 170 145 124 91	359 155 269 122 143 380 692 691 524 187 127 775 484 414 331	3.5 8.0 4.6 6.5 5.6 2.1 1.2 0.6 2.5 6.9 10.1 1.4 1.9 2.3 2.8	15.1 27.4 30.5 31.4 35.5 44.6 44.7 44.7 58.6 58.7 60.2 62.8 62.9 63.0 63.1	12.5 ² 27.4 30.5 31.4 35.5 44.6 44.7 44.7 58.6 58.7 60.2 62.8 62.9 63.0 63.1	12.6 27.4 30.5 31.6 35.5 44.6 44.7 44.8 58.6 58.7 60.2 63.0 63.1 63.2 63.3	0.1 0.0 0.2 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2		
ÉE	levation computed without con	sideration of backv	vater effects f	rom Raritan Riv							
TABLE		X COUNT	Y, NJ		FLOODWAY DATA						
Ξ 12	(ALL JUR		MILL B	ROOK NO.	1 – MILL	BROOK N	10. 2				

Image: Cree 1)* (FEE 1)* (FEE 1 PER FEE T)* FLOODWAY FLOODWAY FLOODWAY Millstone River A 201,355 770/650 5,687 2.4 55.0 55.0 55.1 0.7 B 202,410 850/443 9,517 1.3 55.9 56.0 0.7 C 203,440 961/481 10,126 1.3 56.0 56.0 56.1 0.7 D 204,900 760/403 6,855 1.9 56.0 56.0 56.1 0.7 E 206,880 670/357 6,888 1.9 56.6 56.6 56.7 0.7 G 210,650 780/387 6,784 1.9 56.6 56.6 56.7 0.7 H 212,550 1,070/884 8,014 1.6 56.7 57.5 57.6 0.7 J 214,440 960/320 6,047 1.5 57.5 57.6 0.7 K 215,000 750/105 6,749	FLOODING SOUR	.CE		FLOODWAY	Ý	v	BASE FI VATER-SURFAC (FEET N	E ELEVATION	
A 201,355 770/650 5,687 2.4 55.0 55.0 55.1 0.7 B 202,410 850/443 9,517 1.3 55.9 55.9 56.0 0.7 C 203,440 961/481 10,126 1.3 56.0 56.0 56.1 0.7 D 204,900 760/403 6,855 1.9 56.0 56.0 56.1 0.7 E 206,680 670/357 6,688 1.9 56.2 56.2 56.3 0.7 G 210,650 780/387 6,784 1.9 56.6 56.6 56.7 0.7 H 212,550 1,070/684 8,014 1.6 56.7 56.7 56.8 0.7 J 214,440 960/320 6,047 1.5 57.5 57.5 57.6 0.7 L 216,150 600/200 4,570 2.0 59.8 59.9 0.7 M 217,350 770/180 5,	CROSS SECTION	DISTANCE1		AREA (SQUARE	VELOCITY (FEET PER	REGULATORY			INCREASE
B 202,410 850/443 9,517 1.3 55.9 55.9 56.0 0. C 203,440 961/481 10,126 1.3 56.0 56.0 56.1 0. D 204,900 760/403 6,855 1.9 56.0 56.0 56.1 0. E 206,680 670/357 6,688 1.9 56.2 56.2 56.3 0. G 210,650 780/387 6,784 1.9 56.6 56.6 56.7 0. H 212,550 1,070/684 8,014 1.6 56.7 56.7 56.8 0. J 214,440 960/320 6,047 1.5 57.5 57.5 57.6 0. K 215,000 750/105 6,541 1.6 60.1 60.2 0. N 216,150 600/200 4,570 2.0 59.8 59.8 59.9 0. M 217,350 770/180 5,651	Millstone River	1	· · · · ·	· · · · · ·	1	· · · · · ·			
B 202,410 850/443 9,517 1.3 55.9 55.9 56.0 0.0 C 203,440 961/481 10,126 1.3 56.0 56.0 56.1 0.0 D 204,900 760/403 6,855 1.9 56.0 56.0 56.1 0.0 E 206,680 670/357 6,688 1.9 56.4 56.4 56.5 0.0 G 210,650 780/387 6,784 1.9 56.6 56.6 56.7 0.7 H 212,550 1,070/884 8,014 1.6 56.7 56.7 56.8 0.1 J 214,440 960/320 6,047 1.5 57.5 57.5 57.6 0.7 L 216,150 600/200 4,570 2.0 59.8 59.8 59.9 0.7 L 216,150 600/200 4,570 2.0 59.8 59.8 59.9 0.7 N 218,410 830/7	А	201,355	770/650	5,687	2.4	55.0	55.0	55.1	0.1
C 203,440 961/481 10,126 1.3 56.0 56.0 56.1 0.7 D 204,900 760/403 6,855 1.9 56.0 56.0 56.1 0.7 E 206,680 670/357 6,688 1.9 56.2 56.2 56.3 0.7 G 210,650 780/387 6,784 1.9 56.4 56.6 56.6 56.8 0.7 H 212,550 1,070/684 8,014 1.6 56.7 56.7 56.8 0.7 J 214,440 960/320 6,047 1.5 57.5 57.5 57.6 0.7 K 215,000 750/105 6,749 1.3 59.7 59.8 59.9 0.7 L 216,150 600/200 4,570 2.0 59.8 59.9 0.7 M 217,350 770/180 5,651 1.6 60.1 60.5 60.6 0.7 Q 20,970 1,330/		202,410	850/443		1 1.3 ′	55.9	55.9	56.0	0.1
D 204,900 760/403 6,855 1.9 56.0 56.0 56.1 0.7 E 206,680 670/357 6,688 1.9 56.2 56.2 56.3 0.7 G 210,650 780/387 6,674 1.9 56.6 56.6 56.7 0.7 H 212,550 1,070/684 8,014 1.6 56.7 56.7 56.8 0.7 J 214,440 960/320 6,047 1.5 57.5 57.5 57.6 0.7 K 215,000 750/105 6,749 1.3 59.7 59.8 59.9 0.7 L 216,150 600/200 4,570 2.0 59.8 59.8 59.9 0.7 M 217,350 770/180 5,651 1.6 60.1 60.1 60.1 0.7 M 218,410 830/730 5,407 1.7 60.5 60.6 0.7 Q 220,970 910/462 6,4		· · ·	961/481				56.0	56.1	0.1
E 206,680 670/357 6,688 1.9 56.2 56.2 56.3 0.7 F 208,640 690/326 6,674 1.9 56.4 56.4 56.5 0.7 G 210,650 780/387 6,784 1.9 56.6 56.6 56.7 0.7 H 212,550 1,070/684 8,014 1.6 56.7 56.7 56.8 0.7 J 213,120 1,090/158 7,131 1.3 57.4 57.4 57.5 0.7 J 214,440 960/320 6,047 1.5 57.5 57.5 57.6 0.7 L 216,150 600/200 4,570 2.0 59.8 59.8 59.9 0.7 M 217,350 770/180 5,651 1.6 60.1 60.1 60.2 0.7 N 218,410 830/730 5,407 1.7 60.5 60.5 60.6 0.7 Q 220,970 1,30	D	'	760/403		1 1.9 '	56.0	56.0	56.1	0.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		'	670/357			56.2	56.2	56.3	0.1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			690/326				56.4		0.1
H212,5501,070/6848,0141.656.756.756.80.7I213,1201,090/1587,1311.357.457.457.50.7J214,440960/3206,0471.557.557.557.60.7K215,000750/1056,7491.359.759.759.80.7L216,150600/2004,5702.059.859.859.90.7N217,350770/1805,6511.660.160.160.20.7N218,410830/7305,4071.760.560.560.60.7O219,310870/8806,1011.360.960.961.00.7P220,9701,330/1,1209,6130.861.261.261.40.7Q220,970910/4626,4281.261.361.361.50.7R223,9101,510/4099,4190.861.461.461.661.80.7T225,880930/6446,6890.763.863.863.90.7U226,400870/6655,6090.964.064.064.10.7W228,530588/5673,7441.364.264.264.30.7Y231,210650/5703,3891.464.564.564.60.7	G	· · · ·	780/387	1 '			56.6		0.1
I 213,120 1,090/158 7,131 1.3 57.4 57.4 57.5 0.7 J 214,440 960/320 6,047 1.5 57.5 57.5 57.6 0.7 K 215,000 750/105 6,749 1.3 59.7 59.7 59.8 0.7 L 216,150 600/200 4,570 2.0 59.8 59.8 59.9 0.7 M 217,350 77.0180 5,651 1.6 60.1 60.1 60.2 0.7 N 218,410 830/730 5,407 1.7 60.5 60.5 60.6 0.7 O 219,310 870/680 6,101 1.3 60.9 61.0 0.7 Q 220,970 1,330/1,120 9,613 0.8 61.2 61.2 61.4 0.7 Q 220,970 910/462 6,428 1.2 61.3 61.3 61.5 0.7 R 223,910 1,510/409 <			1						0.1
J214,440960/3206,0471.557.557.557.60.7K215,000750/1056,7491.359.759.759.80.7L216,150600/2004,5702.059.859.859.859.90.7M217,350770/1805,6511.660.160.160.20.7N218,410830/7305,4071.760.560.560.60.7O219,310870/6806,1011.360.960.961.00.7P220,9701,330/1,1209,6130.861.261.261.40.7Q220,970910/4626,4281.261.361.361.50.7R223,9101,510/4099,4190.861.461.461.60.7S224,1402,140/1,19010,0140.761.661.661.80.7U226,800930/6446,6890.763.863.863.90.7V227,300729/3144,6541.064.064.064.10.7W228,530568/3673,7441.364.264.264.30.7Y231,210650/5703,3891.464.564.564.564.60.7	I		1 ' 1	'	1 1.3 ′	57.4	57.4		0.1
K215,000750/1056,7491.359.759.759.80.7L216,150600/2004,5702.059.859.859.90.7M217,350770/1805,6511.660.160.160.20.7N218,410830/7305,4071.760.560.560.60.7O219,310870/6806,1011.360.960.961.00.7P220,9701,330/1,1209,6130.861.261.261.40.7Q220,970910/4626,4281.261.361.661.60.7R223,9101,510/4099,4190.861.461.461.60.7S224,1402,140/1,19010,0140.761.661.661.80.7U226,800930/6446,6890.763.863.863.90.7U226,300729/3144,6541.064.064.064.10.7V227,300729/3144,6541.064.064.264.30.7W228,530568/3673,7441.364.264.264.30.7Y231,210650/5703,3891.464.564.564.564.50.7	J			6,047	1 1.5	57.5	57.5	57.6	0.1
L216,150600/2004,5702.059.859.859.859.90.1M217,350770/1805,6511.660.160.160.20.1N218,410830/7305,4071.760.560.560.60.1O219,310870/6806,1011.360.960.961.00.1P220,9701,330/1,1209,6130.861.261.261.40.2Q220,970910/4626,4281.261.361.361.50.2R223,9101,510/4099,4190.861.461.461.60.2S224,1402,140/1,19010,0140.761.661.661.80.2U226,800930/6446,6890.763.863.863.90.7U226,800930/6444,6541.064.064.064.10.7V227,300729/3144,6541.064.064.064.10.7W228,530568/3673,7441.364.264.264.30.7Y231,210650/5703,3891.464.564.564.564.60.7	K		750/105				59.7	59.8	0.1
M217,350770/1805,6511.660.160.160.20.7N218,410830/7305,4071.760.560.560.60.7O219,310870/6806,1011.360.960.961.00.7P220,9701,330/1,1209,6130.861.261.261.40.7Q220,970910/4626,4281.261.361.361.50.7R223,9101,510/4099,4190.861.461.461.60.7S224,1402,140/1,19010,0140.761.661.661.80.7T225,880930/6446,6890.763.863.863.90.7U226,400870/6655,6090.964.064.064.10.7V227,300729/3144,6541.064.064.064.10.7W228,530568/3673,7441.364.264.264.30.7X230,090707/5004,4921.164.464.464.50.7Y231,210650/5703,3891.464.564.564.60.7	L		1				59.8		0.1
N218,410830/7305,4071.760.560.560.60.7O219,310870/6806,1011.360.960.961.00.7P220,9701,330/1,1209,6130.861.261.261.40.7Q220,970910/4626,4281.261.361.361.50.7R223,9101,510/4099,4190.861.461.461.60.7S224,1402,140/1,19010,0140.761.661.661.80.7T225,880930/6446,6890.763.863.863.90.7U226,400870/6655,6090.964.064.064.10.7V227,300729/3144,6541.064.064.064.10.7W228,530568/3673,7441.364.264.264.30.7Y231,210650/5703,3891.464.564.564.60.7	Μ		770/180		1.6	60.1	60.1	60.2	0.1
O219,310870/6806,1011.360.960.961.00.7P220,9701,330/1,1209,6130.861.261.261.40.7Q220,970910/4626,4281.261.361.361.50.7R223,9101,510/4099,4190.861.461.461.60.7S224,1402,140/1,19010,0140.761.661.661.80.7T225,880930/6446,6890.763.863.863.90.7U226,400870/6655,6090.964.064.064.10.7V227,300729/3144,6541.064.064.064.10.7W228,530568/3673,7441.364.264.264.30.7X230,090707/5004,4921.164.464.464.50.7Y231,210650/5703,3891.464.564.564.60.7	Ν		830/730		1.7	60.5	60.5		0.1
P220,9701,330/1,1209,6130.861.261.261.40.2Q220,970910/4626,4281.261.361.361.50.2R223,9101,510/4099,4190.861.461.461.60.2S224,1402,140/1,19010,0140.761.661.661.80.2T225,880930/6446,6890.763.863.863.90.7U226,400870/6655,6090.964.064.064.10.7V227,300729/3144,6541.064.064.064.10.7W228,530568/3673,7441.364.264.264.30.7X230,090707/5004,4921.164.464.464.50.7Y231,210650/5703,3891.464.564.564.60.7	0		870/680	6,101	1 1.3 '	60.9	60.9	61.0	0.1
Q220,970910/4626,4281.261.361.361.50.2R223,9101,510/4099,4190.861.461.461.60.2S224,1402,140/1,19010,0140.761.661.661.80.2T225,880930/6446,6890.763.863.863.90.7U226,400870/6655,6090.964.064.064.10.7V227,300729/3144,6541.064.064.064.10.7W228,530568/3673,7441.364.264.264.30.7X230,090707/5004,4921.164.464.464.50.7Y231,210650/5703,3891.464.564.564.60.7			1,330/1,120 /	9,613	0.8	61.2	61.2	61.4	0.2
R223,9101,510/4099,4190.861.461.461.60.2S224,1402,140/1,19010,0140.761.661.661.80.2T225,880930/6446,6890.763.863.863.90.7U226,400870/6655,6090.964.064.064.10.7V227,300729/3144,6541.064.064.064.10.7W228,530568/3673,7441.364.264.264.30.7X230,090707/5004,4921.164.464.464.50.7Y231,210650/5703,3891.464.564.564.60.7	Q	220,970	910/462	6,428	1 1.2 ′		61.3	61.5	0.2
S224,1402,140/1,19010,0140.761.661.661.80.2T225,880930/6446,6890.763.863.863.90.7U226,400870/6655,6090.964.064.064.10.7V227,300729/3144,6541.064.064.064.10.7W228,530568/3673,7441.364.264.264.30.7X230,090707/5004,4921.164.464.464.50.7Y231,210650/5703,3891.464.564.564.60.7		223,910		9,419			61.4		0.2
T225,880930/6446,6890.763.863.863.90.7U226,400870/6655,6090.964.064.064.10.7V227,300729/3144,6541.064.064.064.10.7W228,530568/3673,7441.364.264.264.30.7X230,090707/5004,4921.164.464.464.50.7Y231,210650/5703,3891.464.564.564.60.7	S	224,140	2,140/1,190	10,014	0.7		61.6		0.2
V227,300729/3144,6541.064.064.064.10.7W228,530568/3673,7441.364.264.264.30.7X230,090707/5004,4921.164.464.464.50.7Y231,210650/5703,3891.464.564.564.60.7	Т	225,880	930/644	6,689	0.7	63.8	63.8	63.9	0.1
W 228,530 568/367 3,744 1.3 64.2 64.2 64.3 0.7 X 230,090 707/500 4,492 1.1 64.4 64.4 64.5 0.7 Y 231,210 650/570 3,389 1.4 64.5 64.5 64.6 0.7	U	226,400	870/665	5,609	0.9	64.0	64.0	64.1	0.1
X230,090707/5004,4921.164.464.464.50.1Y231,210650/5703,3891.464.564.564.60.1	V		729/314		1.0 '		64.0		0.1
Y 231,210 650/570 3,389 1.4 64.5 64.5 64.6 0.1			568/367		1.3 '	64.2	64.2		0.1
Y 231,210 650/570 3,389 1.4 64.5 64.5 64.6 0.4			707/500	4,492	1.1 '		64.4		0.1
		231,210	650/570		1.4 '	64.5	64.5	64.6	0.1
Z 232,550 480/110 2,380 2.0 64.9 64.9 65.0 0.7	Z	232,550	480/110	2,380	2.0	64.9	64.9	65.0	0.1

²Width/width within county boundary

TABLE

12

FEDERAL EMERGENCY MANAGEMENT AGENCY

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

FLOODWAY DATA

CROSS SECTION DISTANCE ¹ WIDTH (FEET) ² SECTION AREA (SQUARE FEET) MEAN VELOCITY (FEET PER SECOND) REGULATORY WITHOUT FLOODWAY Millstone River (continued) AA 233,370 460/309 2,391 2.0 65.1 65.1 65.1 AB 233,700 670/483 3,504 1.4 65.8 65.8 AC 234,640 780/485 2,567 1.9 66.1 66.1 AD 234,900 765/465 2,441 2.0 66.7 67.3 AF 236,770 755/320 3,284 1.5 67.7 67.7 AG 237,420 650/615 2,345 2.0 67.9 67.9 AH 239,720 936/652 5,211 0.9 68.8 68.6 AI 239,720 936/652 5,211 0.9 68.8 68.8 AJ 240,730 720/361 3,732 1.3 68.9 68.9 AK 241,670 663/500 2,334 21	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)			
AA 233,370 460/309 2,391 2.0 65.1 65.1 AB 233,700 670/483 3,504 1.4 65.8 65.8 AC 234,640 780/485 2,567 1.9 66.1 66.1 AD 234,900 765/485 2,441 2.0 66.7 66.7 AE 235,750 875/341 3,901 1.2 67.3 67.3 AF 236,770 755/320 3,284 1.5 67.7 67.9 AH 238,720 1,060/510 5,446 0.9 68.6 68.6 AI 239,720 936/652 5,211 0.9 68.8 68.8 AJ 240,730 720/361 3,732 1.3 68.9 68.9 AK 241,670 663/500 2,334 2.1 69.1 69.1 AL 242,870 800/148 2,040 2.4 69.8 69.8 AM 243,060 770/210 2,32	WITH FLOODWAY	INCREASE		
AA 233,370 460/309 2,391 2.0 65.1 65.1 AB 233,700 670/483 3,504 1.4 65.8 65.8 AC 234,640 780/485 2,567 1.9 66.1 66.1 AD 234,900 765/455 2,441 2.0 66.7 66.7 AE 235,750 875/341 3,901 1.2 67.3 67.3 AF 236,770 755/320 3,284 1.5 67.7 67.9 AG 237,420 650/615 2,345 2.0 67.9 67.9 AH 238,720 1,060/510 5,446 0.9 68.6 68.6 AI 239,720 936/652 5,211 0.9 68.8 68.8 AJ 240,730 720/361 3,732 1.3 68.9 68.9 AK 241,670 60/148 2,040 2.4 69.8 69.1 AL 242,870 800/148 2,040	1			
AB 233,700 670/483 3,504 1.4 65.8 65.8 AC 234,640 780/485 2,567 1.9 66.1 66.1 AD 234,900 765/465 2,441 2.0 66.7 66.7 AE 235,750 875/341 3,901 1.2 67.3 67.3 AF 236,770 755/320 3,284 1.5 67.7 67.7 AG 237,420 650/615 2,345 2.0 67.9 67.9 AH 238,720 1,060/510 5,446 0.9 68.8 68.8 AJ 240,730 720/361 3,732 1.3 68.9 68.9 AK 241,670 663/500 2,334 2.1 69.1 69.1 AL 242,870 800/148 2,040 2.4 69.8 69.8 AM 244,1670 68/55 3,077 1.6 70.8 70.8 AD 244,990 640/310 2,100	65.3	0.2		
AC234,640780/4852,5671.966.166.1AD234,900765/4652,4412.066.766.7AE235,750875/3413,9011.267.367.3AF236,770755/3203,2841.567.767.7AG237,420650/6152,3452.067.967.9AH238,7201,060/5105,4460.968.668.6AI239,720936/6525,2110.968.868.8AJ240,730720/3613,7321.368.968.9AK241,670663/5002,3342.169.169.1AL242,870800/1482,0402.469.869.8AM243,060770/2102,3222.170.370.3AN244,140680/5853,0771.670.870.8AQ247,290580/523,1051.572.672.6AQ247,290580/523,1051.572.672.6AR248,650485/1682,4821.973.173.1AS248,970730/3153,0771.673.373.3AT249,860613/3251,9162.473.773.7AU251,050700/5704,2091.174.374.3AV253,080980/5745,8230.874.574.5AW254,750710/6944,239<	65.9	0.1		
AD234,900765/4652,4412.066.766.7AE235,750875/3413,9011.267.367.3AF236,770755/3203,2841.567.767.7AG237,420650/6152,3452.067.967.9AH238,7201,060/5105,4460.968.668.6AI239,720936/6525,2110.968.868.9AJ240,730720/3613,7321.368.968.9AK241,670663/5002,3342.169.169.1AL242,870800/1482,0402.469.869.8AM243,060770/2102,3222.170.370.3AN244,140680/5853,0771.670.870.8AQ244,990640/3102,1002.371.171.1AP246,060590/1702,2222.271.671.6AQ247,290580/523,1051.572.672.6AR248,650485/1682,4821.973.173.1AS248,970730/3153,0771.673.373.3AT249,860613/3251,9162.473.773.7AU251,050700/5704,2091.174.374.3AV253,080980/5745,8230.874.574.5AW254,750710/6944,239	66.2	0.1		
AE235,750875/3413,9011.267.367.3AF236,770755/3203,2841.567.767.7AG237,420650/6152,3452.067.967.9AH238,7201,060/5105,4460.968.668.6AI239,720936/6525,2110.968.868.8AJ240,730720/3613,7321.368.968.9AK241,670663/5002,3342.169.169.1AL242,870800/1482,0402.469.869.8AM243,060770/2102,3222.170.370.3AN244,140680/5853,0771.670.870.8AO244,990640/3102,1002.371.171.1AP246,060590/1702,2222.271.671.6AQ247,290580/523,1051.572.672.6AR248,650485/1682,4821.973.173.1AS248,970730/3153,0771.673.373.3AT249,860613/3251,9162.473.773.7AU251,050700/5704,2091.174.374.3AV253,080980/5745,8230.874.574.5AW254,750710/6944,2391.174.774.7AX255,470600/5223,493	66.7	0.0		
AF236,770755/3203,2841.567.767.7AG237,420650/6152,3452.067.967.9AH238,7201,060/5105,4460.968.668.6AI239,720936/6525,2110.968.868.8AJ240,730720/3613,7321.368.968.9AK241,670663/5002,3342.169.169.1AL242,870800/1482,0402.469.869.8AM243,060770/2102,3222.170.370.3AN244,140680/5853,0771.670.870.8AO244,990640/3102,1002.371.171.1AP246,060590/1702,2222.271.671.6AQ247,290580/523,1051.572.672.6AR248,650485/1682,4821.973.173.1AS248,970730/3153,0771.673.373.3AT249,860613/3251,9162.473.773.7AU251,050700/5704,2091.174.374.3AV253,080980/5745,8230.874.574.5AW254,750710/6944,2391.174.774.7AX255,470600/5223,4931.374.874.8	67.3	0.0		
AG237,420650/6152,3452.067.967.9AH238,7201,060/5105,4460.968.668.6AI239,720936/6525,2110.968.868.8AJ240,730720/3613,7321.368.968.9AK241,670663/5002,3342.169.169.1AL242,870800/1482,0402.469.869.8AM243,060770/2102,3222.170.370.3AN244,140680/5853,0771.670.870.8AO244,990640/3102,1002.371.171.1AP246,060590/1702,2222.271.671.6AQ247,290580/523,1051.572.672.6AR248,650485/1682,4821.973.173.1AS248,970730/3153,0771.673.373.3AT249,860613/3251,9162.473.773.7AU251,050700/5704,2091.174.374.3AV253,080980/5745,8230.874.574.5AW254,750710/6944,2391.174.774.7AX255,470600/5223,4931.374.874.8	67.7	0.0		
AH238,7201,060/5105,4460.968.668.6AI239,720936/6525,2110.968.868.8AJ240,730720/3613,7321.368.968.9AK241,670663/5002,3342.169.169.1AL242,870800/1482,0402.469.869.8AM243,060770/2102,3222.170.370.3AN244,140680/5853,0771.670.870.8AO244,990640/3102,1002.371.171.1AP246,060590/1702,2222.271.671.6AQ247,290580/523,1051.572.672.6AR248,650485/1682,4821.973.173.1AS248,970730/3153,0771.673.373.3AT249,860613/3251,9162.473.773.7AU251,050700/5704,2091.174.374.3AV253,080980/5745,8230.874.574.5AW254,750710/6944,2391.174.774.7AX255,470600/5223,4931.374.874.8	67.9	0.0		
AI239,720936/6525,2110.968.868.8AJ240,730720/3613,7321.368.968.9AK241,670663/5002,3342.169.169.1AL242,870800/1482,0402.469.869.8AM243,060770/2102,3222.170.370.3AN244,140680/5853,0771.670.870.8AO244,990640/3102,1002.371.171.1AP246,060590/1702,2222.271.671.6AQ247,290580/523,1051.572.672.6AR248,650485/1682,4821.973.173.1AS248,970730/3153,0771.673.373.3AT249,860613/3251,9162.473.773.7AU251,050700/5704,2091.174.374.3AV253,080980/5745,8230.874.574.5AW254,750710/6944,2391.174.774.7AX255,470600/5223,4931.374.874.8	68.6	0.0		
AJ240,730720/3613,7321.368.968.9AK241,670663/5002,3342.169.169.1AL242,870800/1482,0402.469.869.8AM243,060770/2102,3222.170.370.3AN244,140680/5853,0771.670.870.8AO244,990640/3102,1002.371.171.1AP246,060590/1702,2222.271.671.6AQ247,290580/523,1051.572.672.6AR248,650485/1682,4821.973.173.1AS248,970730/3153,0771.673.373.3AT249,860613/3251,9162.473.773.7AU251,050700/5704,2091.174.374.3AV253,080980/5745,8230.874.574.5AW254,750710/6944,2391.174.774.7AX255,470600/5223,4931.374.874.8	68.8	0.0		
AL242,870800/1482,0402.469.869.8AM243,060770/2102,3222.170.370.3AN244,140680/5853,0771.670.870.8AO244,990640/3102,1002.371.171.1AP246,060590/1702,2222.271.671.6AQ247,290580/523,1051.572.672.6AR248,650485/1682,4821.973.173.1AS248,970730/3153,0771.673.373.3AT249,860613/3251,9162.473.773.7AU251,050700/5704,2091.174.374.3AV253,080980/5745,8230.874.574.5AW254,750710/6944,2391.174.774.7AX255,470600/5223,4931.374.874.8	68.9	0.0		
AM243,060770/2102,3222.170.370.3AN244,140680/5853,0771.670.870.8AO244,990640/3102,1002.371.171.1AP246,060590/1702,2222.271.671.6AQ247,290580/523,1051.572.672.6AR248,650485/1682,4821.973.173.1AS248,970730/3153,0771.673.373.3AT249,860613/3251,9162.473.773.7AU251,050700/5704,2091.174.374.3AV253,080980/5745,8230.874.574.5AW254,750710/6944,2391.174.774.7AX255,470600/5223,4931.374.874.8	69.1	0.0		
AN244,140680/5853,0771.670.870.8AO244,990640/3102,1002.371.171.1AP246,060590/1702,2222.271.671.6AQ247,290580/523,1051.572.672.6AR248,650485/1682,4821.973.173.1AS248,970730/3153,0771.673.373.3AT249,860613/3251,9162.473.773.7AU251,050700/5704,2091.174.374.3AV253,080980/5745,8230.874.574.5AW254,750710/6944,2391.174.774.7AX255,470600/5223,4931.374.874.8	69.8	0.0		
AO244,990640/3102,1002.371.171.1AP246,060590/1702,2222.271.671.6AQ247,290580/523,1051.572.672.6AR248,650485/1682,4821.973.173.1AS248,970730/3153,0771.673.373.3AT249,860613/3251,9162.473.773.7AU251,050700/5704,2091.174.374.3AV253,080980/5745,8230.874.574.5AW254,750710/6944,2391.174.774.7AX255,470600/5223,4931.374.874.8	70.3	0.0		
AP246,060590/1702,2222.271.671.6AQ247,290580/523,1051.572.672.6AR248,650485/1682,4821.973.173.1AS248,970730/3153,0771.673.373.3AT249,860613/3251,9162.473.773.7AU251,050700/5704,2091.174.374.3AV253,080980/5745,8230.874.574.5AW254,750710/6944,2391.174.774.7AX255,470600/5223,4931.374.874.8	70.8	0.0		
AP246,060590/1702,2222.271.671.6AQ247,290580/523,1051.572.672.6AR248,650485/1682,4821.973.173.1AS248,970730/3153,0771.673.373.3AT249,860613/3251,9162.473.773.7AU251,050700/5704,2091.174.374.3AV253,080980/5745,8230.874.574.5AW254,750710/6944,2391.174.774.7AX255,470600/5223,4931.374.874.8	71.1	0.0		
AR248,650485/1682,4821.973.173.1AS248,970730/3153,0771.673.373.3AT249,860613/3251,9162.473.773.7AU251,050700/5704,2091.174.374.3AV253,080980/5745,8230.874.574.5AW254,750710/6944,2391.174.774.7AX255,470600/5223,4931.374.874.8	71.8	0.2		
AS248,970730/3153,0771.673.373.3AT249,860613/3251,9162.473.773.7AU251,050700/5704,2091.174.374.3AV253,080980/5745,8230.874.574.5AW254,750710/6944,2391.174.774.7AX255,470600/5223,4931.374.874.8	72.7	0.1		
AT249,860613/3251,9162.473.773.7AU251,050700/5704,2091.174.374.3AV253,080980/5745,8230.874.574.5AW254,750710/6944,2391.174.774.7AX255,470600/5223,4931.374.874.8	73.3	0.2		
AU251,050700/5704,2091.174.374.3AV253,080980/5745,8230.874.574.5AW254,750710/6944,2391.174.774.7AX255,470600/5223,4931.374.874.8	73.4	0.1		
AV253,080980/5745,8230.874.574.5AW254,750710/6944,2391.174.774.7AX255,470600/5223,4931.374.874.8	73.8	0.1		
AW254,750710/6944,2391.174.774.7AX255,470600/5223,4931.374.874.8	74.4	0.1		
AX 255,470 600/522 3,493 1.3 74.8 74.8	74.6	0.1		
	74.8	0.1		
	74.9	0.1		
AY 255,850 772/730 3,946 1.1 76.0 76.0	76.0	0.0		
AZ 257,310 590/125 3,169 1.4 76.4 76.4 76.4	76.5	0.1		

²Width/width within county boundary

TABLE

12

FEDERAL EMERGENCY MANAGEMENT AGENCY

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

FLOODWAY DATA

FLOODING SOURCE		FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)			
CROSS SECTION	DISTANCE1	WIDTH (FEET) ²	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Millstone River (continued)			, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,				
BÀ	258,060	530/130	3,797	1.2	76.6	76.6	76.7	0.1
BB	259,210	756/686	4,145	1.1	76.8	76.8	76.9	0.1
BC	260,870	550/378	2,358	1.2	77.1	77.1	77.2	0.1
BD	262,030	335/280	1,273	2.2	77.6	77.6	77.7	0.1
BE	263,110	347/6	1,674	1.7	78.4	78.4	78.4	0.0
BF	263,820	350/63	1,973	1.4	78.6	78.6	78.6	0.0
BG	264,670	312/59	1,706	1.7	78.8	78.8	78.8	0.0
BH	265,270	320/174	1,927	1.5	79.0	79.0	79.0	0.0
BI	265,530	400/336	1,481	1.9	79.4	79.4	79.5	0.1
BJ	266,490	335/237	1,008	2.8	80.2	80.2	80.3	0.1
BK	267,110	440/195	1,697	1.7	81.0	81.0	81.0	0.0
BL	267,520	370/60	2,220	1.3	82.8	82.8	82.8	0.0
BM	268,410	270/161	1,707	1.6	82.9	82.9	82.9	0.0
BN	268,980	430/296	2,499	1.1	83.0	83.0	83.0	0.0
во	269,760	450/73	2,409	1.2	83.1	83.1	83.2	0.1
BP	270,060	450/80	2,906	1.0	84.1	84.1	84.1	0.0
BQ	270,950	440/239	3,063	0.9	84.2	84.2	84.2	0.0
BR	271,890	636/604	3,068	0.9	84.3	84.3	84.3	0.0
BS	272,930	580/460	2,791	1.0	84.4	84.4	84.5	0.1
BT	273,430	430/400	1,609	1.7	84.5	84.5	84.6	0.1
BU	274,140	370/335	1,518	1.9	84.7	84.7	84.8	0.1
BV	274,800	380/147	1,791	1.6	85.4	85.4	85.4	0.0
BW	275,070	330/83	1,414	2.0	87.3	87.3	87.3	0.0
BX	275,620	370/350	1,790	1.6	87.6	87.6	87.6	0.0
BY	276,140	290/60	1,204	2.3	87.9	87.9	87.9	0.0
BZ	276,850	280/219	1,320	2.1	88.4	88.4	88.5	0.1

²Width/width within county boundary

TABLE

12

FEDERAL EMERGENCY MANAGEMENT AGENCY

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

FLOODWAY DATA

FLOODING SOURCE		FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)			
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Millstone River (continued)			,					
CÀ	277,200	74/37 ²	529	5.3	88.6	88.6	88.7	0.1
СВ	277,532	350/320 ²	1,590	1.8	90.0	90.0	90.1	0.1
СС	278,332	450/300 ²	2,314	1.2	90.3	90.3	90.4	0.1
CD	279,052	400/173 ²	1,611	1.7	90.5	90.5	90.6	0.1
CE	279,452	300/280 ²	1,426	2.0	90.7	90.7	90.8	0.1
CF	280,362	370/360 ²	1,974	1.4	91.2	91.2	91.3	0.1
CG	281,082	395/375 ²	1,057	2.7	91.4	91.4	91.5	0.1
СН	281,732	260/180 ²	1,143	2.5	92.5	92.5	92.5	0.0
CI	282,522	280/252 ²	1,258	2.2	93.1	93.1	93.1	0.0
CJ	282,742	320/180 ²	1,320	2.1	94.1	94.1	94.1	0.0
СК	283,322	290/117 ²	599	4.7	94.6	94.6	94.6	0.0
CL	284,110	350/260 ²	1,514	1.9	96.0	96.0	96.2	0.2
СМ	285,040	580/200 ²	2,502	0.9	96.4	96.4	96.6	0.2
CN	285,830	450/286 ²	1,795	1.3	96.6	96.6	96.8	0.2
CO	287,280	680	2,900	0.8	96.9	96.9	97.1	0.2
CP	288,270	420	1,540	1.5	97.1	97.1	97.2	0.1
CQ	289,240	347	1,558	1.5	97.5	97.5	97.7	0.2
CR	290,160	355	1,290	1.8	97.9	97.9	98.1	0.2
CS	290,470	490	3,810	0.6	99.6	99.6	99.8	0.2
СТ	290,920	505	3,161	0.7	99.6	99.6	99.8	0.2
CU	291,510	426	1,794	1.3	99.7	99.7	99.9	0.2
CV	292,360	506	1,540	1.5	100.4	100.4	100.5	0.1
CW	292,960	470	1,387	1.1	100.7	100.7	100.8	0.1
CX	293,160	470	1,752	0.9	100.9	100.9	101.0	0.1
CY	293,990	615	1,871	0.8	101.0	101.0	101.1	0.1
CZ	294,840	640	2,013	0.8	101.2	101.2	101.3	0.1

²Width/width within county boundary

TABLE

12

FEDERAL EMERGENCY MANAGEMENT AGENCY

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

FLOODWAY DATA

	FLOODING SOUF	RCE		FLOODWA	Y	v	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)			
	CROSS SECTION	DISTANCE1	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
	Istone River (continued) DA DB DC DD DE DF DG DH DI DJ DK DL DM DN DN DO	295,510 296,190 296,820 297,670 298,520 300,120 301,050 302,280 302,530 303,400 303,650 304,280 304,870 305,880	289 410 445 398 309 455 500 350 400 430 320 170 355 328 465	959 781 1,015 884 795 1,200 931 599 660 1,365 938 246 1,243 962 1,224	1.7 2.0 1.6 1.8 2.0 1.3 1.7 2.7 2.4 1.2 1.7 6.5 1.3 1.7 1.3	101.3 102.0 102.8 103.7 105.0 105.7 106.2 107.7 110.6 112.5 113.0 113.0 114.7 115.2 116.4	101.3 102.0 102.8 103.7 105.0 105.7 106.2 107.7 110.6 112.5 113.0 114.7 115.2 116.4	101.4 102.1 103.0 105.0 105.7 106.2 107.8 110.6 112.5 113.0 114.7 115.2 116.4	0.1 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0	
TABLE					FLOODWAY DATA					
LE 12					MILLSTONE RIVER					

FLOODING SOURCE		FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)			
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Oakeys Brook			, ,	,				
A	100,000	130	636	2.3	53.9	53.9	54.1	0.2
В	101,315	55	175	8.5	74.1	74.1	74.1	0.0
c	102,155	50	236	6.3	79.4	79.4	79.6	0.2
D	102,340	120	632	2.4	82.0	82.0	82.0	0.0
Ē	102,750	105	434	3.4	82.2	82.2	82.3	0.1
F F	103,360	38	187	8.0	83.7	83.7	83.9	0.2
G	103,950	200	968	1.5	88.4	88.4	88.5	0.1
Н	104,240	155	923	1.6	88.6	88.6	88.6	0.0
	105,115	225	880	1.0	89.2	89.2	89.4	0.2
J	106,120	225	766	1.2	89.4	89.4	89.6	0.2
ĸ	106,950	155	352	2.6	89.8	89.8	90.0	0.2
L	107,855	34	140	4.3	91.3	91.3	91.3	0.0
M	108,035	35	97	6.1	92.3	92.3	92.3	0.0
N	109,025	40	231	2.1	94.7	94.7	94.7	0.0
0	109,817	100	123	3.9	95.5	95.5	95.5	0.0
P	109,922	140	497	1.0	96.4	96.4	96.4	0.0
Q	111,080	34	159	3.0	97.0	97.0	97.0	0.0
R	111,230	170	451	2.4	97.6	97.6	97.6	0.0
S	111,373	145	513	2.1	99.1	99.1	99.3	0.2
T	111,403	300	616	1.7	99.3	99.3	99.5	0.2
Ŭ	111,728	195	494	2.1	99.4	99.4	99.5	0.1
V	112,675	263	291	3.6	100.6	100.6	100.8	0.2
W	113,200	565	749	1.4	102.0	102.0	102.1	0.1
X	113,700	411	748	1.4	102.6	102.6	102.7	0.1
Y	114,250	360	852	1.2	103.2	103.2	103.3	0.1
Z	114,410	410	974	1.1	103.3	103.3	103.4	0.1

TABLE

12

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

OAKEYS BROOK

FLOODING SOURCE		FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)			
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Dakeys Brook (continued) AA AB AC AD AE AF AG AH AI AJ AK	115,170 ¹ 116,025 ¹ 116,957 ¹ 118,307 ¹ 119,302 ¹ 120,392 ¹ 120,874 ¹ 121,084 ¹ 122,299 ¹ 122,999 ¹	235 149 28 35 140 94 61 38 48 43 34	282 274 83 83 355 173 111 59 80 78 72	2.0 2.1 6.9 6.9 1.6 2.5 3.8 7.2 4.0 4.2 4.5	103.9 104.7 104.9 106.3 109.6 110.7 113.2 114.7 116.5 122.1 125.0	103.9 104.7 104.9 106.3 109.6 110.7 113.2 114.7 116.5 122.1 125.0	103.9 104.8 105.0 106.4 109.7 110.8 113.3 114.7 116.6 122.1 125.0	0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0
Parkway Branch A B C D E	600 ² 1,000 ² 1,300 ² 1,900 ² 2,570 ²	65 95 141 91 22	126 291 305 131 118	5.2 2.3 2.2 5.0 5.6	34.7 37.0 37.7 39.8 42.1	33.4 ³ 37.0 37.7 39.8 42.1	33.5 37.1 37.9 39.8 42.2	0.1 0.2 0.0 0.1

Feet above confluence with South Branch Ranway River

TABLE

12

³Elevation computed without consideration of backwater effects from South Branch Rahway River

FLOODWAY DATA

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

OAKEYS BROOK – PARKWAY BRANCH

FLOODING SOUF	CE		FLOODWA	Y	V	BASE F VATER-SURFAC	E ELEVATION		
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	(FEET N WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Pumpkin Patch Brook A B C D E F G H I J K Rahway River A B C D E F	5,020 ¹ 5,740 ¹ 6,720 ¹ 7,185 ¹ 7,810 ¹ 7,960 ¹ 8,370 ¹ 8,980 ¹ 9,525 ¹ 10,660 ¹ 10,890 ¹ 4,268 ² 7,680 ² 9,632 ² 12,622 ² 15,524 ² 17,386 ²	51 47 41 42 25 44 185 100 37 39 40 646/441 ³ 774/359 ³ 521/205 ³ 411/181 ³ 724/424 ³ 300/148 ³	113 169 177 173 135 159 455 252 101 122 100 4,541 4,735 4,108 2,567 3,743 3,317	6.2 4.1 3.9 4.1 5.2 4.4 1.5 2.8 6.9 5.7 7.0 2.1 2.0 2.3 3.6 2.5 2.8	60.1 63.0 65.1 66.0 68.4 69.3 71.1 72.5 80.8 84.0 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4	$\begin{array}{c} 60.1\\ 63.0\\ 65.1\\ 66.0\\ 68.0\\ 68.4\\ 69.3\\ 71.1\\ 72.5\\ 80.8\\ 84.0\\ \end{array}$	60.1 63.1 65.3 66.2 68.6 69.4 71.2 72.7 80.8 84.0 2.7 3.1 3.5 4.0 4.9 5.1	0.0 0.1 0.2 0.2 0.2 0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0	
¹ Feet above confluence with Rob ² Feet above confluence with Arth ³ Width/width within county bound ⁴ Elevation computed without cons	ur Kill ary	ooding from A	ırthur Kill						
AB MIDDLESE	FEDERAL EMERGENCY MANAGEMENT AGENCY FLOODWAY DATA MIDDLESEX COUNTY, NJ								
ALL JUR	ISDICTIO	NS)		PUMPKIN	N PATCH B	ROOK – F	RAHWAY	RIVER	

						Γ					
	FLOODING SOUR	CE		FLOODWA	Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)					
	CROSS SECTION	DISTANCE1	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
1Fe 2Wi	ritan River A B C D E F G H I J K L M N O O	undary	1,930 1,950 4,253 560 788 682 1,065 930 900 795 806 ² 501 ² 719 ² 766 ² 927 ²	35,861 19,395 23,067 10,008 14,653 11,418 15,585 16,007 11,667 13,067 9,074 7,378 8,894 9,595 12,271	1.7 3.2 5.0 5.5 3.7 4.9 3.4 3.9 4.5 4.0 5.7 6.4 5.3 4.9 3.8	9.0 9.0 9.0 10.6 11.9 12.0 12.8 13.2 14.3 15.6 18.0 21.1 24.3 29.3 30.2	$\begin{array}{r} 4.0^{3} \\ 5.8^{3} \\ 7.4^{3} \\ 10.6 \\ 11.9 \\ 12.0 \\ 12.8 \\ 13.2 \\ 14.3 \\ 15.6 \\ 18.0 \\ 21.1 \\ 24.3 \\ 29.3 \\ 30.2 \end{array}$	4.0 6.0 7.6 10.8 12.1 12.2 13.0 13.3 14.5 15.8 18.2 21.3 24.5 29.5 30.4	0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2		
TABLE	FEDERAL EMERGENO				FLOODWAY DATA						
_E 12	(ALL JUR		•		RARITAN RIVER						

							BASE F			
	FLOODING SOUR	RCE		FLOODWA	Y	V	WATER-SURFACE ELEVATION (FEET NAVD)			
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Ro	binsons Branch A B C D E F G H I J K binsons Branch Tributary A B C D E F	$36,950^{1}$ $38,096^{1}$ $38,820^{1}$ $39,950^{1}$ $40,630^{1}$ $41,270^{1}$ $42,000^{1}$ $42,567^{1}$ $43,280^{1}$ $43,400^{1}$ $1,520^{2}$ $2,930^{2}$ $3,285^{2}$ $4,425^{2}$ $5,150^{2}$ $6,100^{2}$	910 ³ 1,690 ³ 327 97 118 46 85 85 181 67 10 305 29 24 21 19 16	5,170 9,751 683 123 288 152 192 262 614 156 48 1,249 36 35 29 23 19	0.2 0.1 1.0 5.4 2.3 4.3 3.4 2.5 0.6 2.5 8.2 0.2 5.6 5.8 6.8 4.4 5.3	56.8 57.7 57.9 58.8 62.1 62.9 66.8 70.3 71.4 71.6 72.6 57.8 64.0 66.5 83.1 93.6 103.7	56.8 57.7 57.9 58.8 62.1 62.9 66.8 70.3 71.4 71.6 72.6 57.8 64.0 66.5 83.1 93.6 103.7	57.0 57.8 58.1 58.8 62.1 62.9 66.8 70.4 71.6 71.8 72.6 58.0 64.0 66.5 83.1 93.6 103.7	0.2 0.1 0.2 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
² Fe	¹ Feet above confluence with Rahway River ² Feet above confluence with Robinsons Branch ³ This width includes Robinsons Branch Tributary									
TABLE	FEDERAL EMERGENCY MANAGEMENT AGENCY MIDDLESEX COUNTY, NJ				FLOODWAY DATA					
E 12	(ALL JUR	ISDICTIO	NS)	ROB	INSONS B	RANCH – RO	OBINSONS	BRANCH	RIBUTARY	

FLOODING SOUF	FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)				
CROSS SECTION	DISTANCE1	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Sawmill Brook No. 1			, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,				
A	72,380	200	875	0.7	25.9	22.9 ²	23.1	0.2
В	73,360	180	540	1.2	25.9	24.6 ²	24.8	0.2
c	73,512	70	280	2.3	26.1	26.1	26.3	0.2
D	74,265	65	165	3.9	26.9	26.9	27.0	0.1
Ē	75,240	56	135	4.8	30.0	30.0	30.2	0.2
F	75,516	117	305	2.1	33.4	33.4	33.4	0.0
G	76,325	30	130	5.0	33.8	33.8	34.0	0.2
Н	77,095	40	130	5.0	35.1	35.1	35.3	0.2
	77,210	44	170	3.8	35.2	35.2	35.4	0.2
J	78,000	20	170	3.8	37.1	37.1	37.1	0.0
K	78,610	90	210	2.1	41.1	41.1	41.3	0.2
L	79,136	23	52	8.6	43.3	43.3	43.3	0.0
Μ	79,643	26	85	5.3	46.6	46.6	46.8	0.2
N	80,000	25	34	4.7	48.3	48.3	48.3	0.0
0	80,620	30	45	3.6	51.8	51.8	52.0	0.2
P	80,805	135	385	0.4	52.8	52.8	52.8	0.0
Q	82,015	27	25	6.4	55.6	55.6	55.6	0.0
R	82,260	25	335	0.5	71.0	71.0	71.0	0.0
S	82,670	30	330	0.5	71.0	71.0	71.0	0.0
Т	83,152	70	450	1.6	71.0	71.0	71.0	0.0
U	83,338	70	460	1.6	71.1	71.1	71.2	0.1
V	84,145	65	255	2.8	71.2	71.2	71.3	0.1
W	84,450	33	245	2.9	72.8	72.8	72.8	0.0
X	85,000	31	95	7.6	73.2	73.2	73.2	0.0
Y	85,570	25	100	6.4	78.7	78.7	78.8	0.1
Z	87,350	29	102	6.3	93.4	93.4	93.5	0.1

TABLE

12

²Elevation computed without consideration of backwater effects from Lawrence Brook

FEDERAL	EMERGENCY	MANAGEMENT	AGENCY

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

FLOODWAY DATA

SAWMILL BROOK NO. 1

FLOODING SOU	RCE	FLC		Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)			
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Sawmill Brook No. 1 (continued) AA AB AC AD Sawmill Brook No. 2 A B C D E F G H I I		60 52 60 116 239 220 380 594 955 875 850 820 895	271 105 157 111 589 710 2,709 1,823 2,615 2,570 2,492 2,400 3,289	2.4 6.1 2.8 4.0 0.9 0.8 0.2 0.1 0.0 0.1 0.1 0.1 0.0	100.1 101.8 105.1 116.1 38.2 38.6 41.0 41.0 41.0 41.1 41.1 41.1 41.2	100.1 101.8 105.1 116.1 38.2 38.6 41.0 41.0 41.0 41.1 41.1 41.1 41.2	100.1 101.8 105.3 116.1 38.4 38.7 41.0 41.0 41.0 41.2 41.2 41.2 41.3 41.3	0.0 0.2 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.1
H FEDERAL EMERGEN				FLOODWAY DATA SAWMILL BROOK NO. 1 – SAWMILL BROOK				
n (ALL JUF	RISDICTIO	NS)	SA					

	FLOODING SOURCE			FLOODWA	(FEET N/		CE ELEVATION		
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
¹ Fe	allow Brook A B C D E F G H I J K L J K L M N O P Q R R		245 530 415 70 700 560 370 360 265 105 355 188 193 340 240 287 59 336	315 1,273 870 470 3,581 2,172 1,307 678 716 147 756 559 579 1,832 537 645 153 900	2.6 0.7 1.0 1.8 0.2 0.4 0.6 1.2 1.0 5.0 1.0 1.3 1.3 0.4 1.4 1.0 4.4 0.7	74.3 77.4 78.7 79.0 82.5 82.5 82.7 83.1 83.8 84.6 87.8 88.5 89.6 92.9 92.9 92.9 94.6 97.6 100.1	74.2 ² 77.4 78.7 79.0 82.5 82.5 82.7 83.1 83.8 84.6 87.8 88.5 89.6 92.9 92.9 92.9 94.6 97.6 100.1	74.3 77.5 78.8 79.2 82.6 82.9 83.3 83.8 84.6 87.9 88.7 89.8 92.9 92.9 92.9 94.8 97.8 100.3	$\begin{array}{c} 0.1 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.1 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \\ 0.2 \end{array}$
TABLE	FEDERAL EMERGENCY MANAGEMENT AGENCY MIDDLESEX COUNTY, NJ				FLOODWAY DATA				
E 12	(ALL JUR	ISDICTIO	NS)			SHALL	OW BRO	ОК	

FLOODING SOU		FLOODWA	Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)				
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Shallow Brook (continued) S T U V W X Y Z AA AB	26,202 ¹ 27,097 ¹ 28,218 ¹ 28,993 ¹ 29,903 ¹ 30,963 ¹ 31,813 ¹ 32,633 ¹ 33,198 ¹ 34,621 ¹	550 320 180 190 294 ³ 165 95 110 130 108	270 654 239 344 232 326 176 248 536 122	2.5 0.9 2.5 1.7 2.6 1.4 2.6 1.8 0.8 3.7	107.4 107.9 108.6 111.4 114.3 117.1 118.6 120.8 125.1 127.9	107.4 107.9 108.6 111.4 114.3 117.1 118.6 120.8 125.1 127.9	107.4 108.0 108.7 111.4 114.4 117.2 118.6 120.8 125.1 128.0	0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.1
Sixmile Run A B C D E F G H I J K L	55^{2} 820^{2} $1,440^{2}$ $1,650^{2}$ $2,160^{2}$ $2,965^{2}$ $4,060^{2}$ $4,765^{2}$ $5,660^{2}$ $6,800^{2}$ $7,335^{2}$ $7,905^{2}$	81 65 20 48 30 54 58 65 42 61 50 60	175 164 60 146 105 161 83 125 60 163 64 125	3.8 4.1 8.7 3.6 5.0 2.9 5.6 2.5 5.3 1.9 4.9 2.1	71.9 74.3 76.5 78.7 79.6 81.6 87.2 90.0 92.7 96.3 97.8 100.2	71.9 74.3 76.5 78.7 79.6 81.6 87.2 90.0 92.7 96.3 97.8 100.2	72.1 74.5 76.5 78.7 79.8 81.7 87.2 90.0 92.8 96.5 97.8 100.3	0.2 0.2 0.0 0.0 0.2 0.1 0.0 0.0 0.1 0.2 0.0 0.1

TABLE

12

²Feet above State Route 27 ³Floodway adjusted to update waterlines. Does not match model.

FEDERAL EMERGENCY	MANAGEMENT AGENCY
MIDDLESEX	COUNTY, NJ
(ALL JURIS	SDICTIONS)

FLOODWAY DATA

SHALLOW BROOK – SIXMILE RUN

FLOODING SOURCE			FLOODWA	Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)				
CROSS SECTION	DISTANCE1	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Six Mile Run Branch A B C D E F G H I J K L M	160 725 1,285 1,795 2,315 2,560 2,784 3,139 3,389 3,952 4,362 4,843 5,273	68 110 233 109 89 95 35 29 21 57 205 32 55	283 403 531 124 264 288 122 65 52 71 299 39 118	2.0 1.4 1.1 4.6 2.2 2.0 4.7 4.4 5.5 4.1 1.0 6.3 2.1	148.4 148.9 149.6 151.5 156.5 157.6 160.1 162.4 164.8 174.5 178.2 180.7 184.4	148.4 148.9 149.6 151.5 156.5 157.6 160.1 162.4 164.8 174.5 178.2 180.7 184.4	148.5 149.0 149.8 151.5 156.7 157.7 160.2 162.5 164.8 174.5 178.3 180.7 184.5	0.1 0.2 0.0 0.2 0.1 0.2 0.1 0.0 0.0 0.1 0.0 0.1	

FEDERAL EMERGENCY MANAGEMENT AGENCY

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

TABLE

12

FLOODWAY DATA

SIX MILE RUN BRANCH

FLOODING SOUF		FLOODWA	Y	BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)				
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
South Branch Rahway River			, ,	, , , , , , , , , , , , , , , , , , , ,				
A	7,835.52	125	457	6.0	15.8	15.8	16.0	0.2
B	8,411.04	300	1,623	1.7	16.9	16.9	17.0	0.1
C	8,960.16	150	1,028	2.7	16.9	16.9	17.0	0.1
D	9,335.04	350	1,372	2.0	17.0	17.0	17.2	0.2
F	9,905.28	225	1,062	2.6	17.2	17.2	17.3	0.1
E	10,243.20	180	964	2.9	17.3	17.3	17.4	0.1
G	10,834.56	77	590	4.7	17.7	17.7	17.8	0.1
H	11,267.52	85	558	4.9	18.3	18.3	18.4	0.1
	11,515.68	60	513	5.4	18.6	18.6	18.8	0.2
	12,091.20	60	509	5.4	19.6	19.6	19.7	0.1
ĸ	12,418.56	60	492	5.6	20.1	20.1	20.2	0.1
	12,640.32	95	632	4.4	20.5	20.5	20.2	0.2
M	13,532.64	230	1,080	2.5	24.0	24.0	24.2	0.2
N	14,028.96	200	1,060	1.9	24.7	24.7	24.9	0.2
0	14,630.88	193	1,202	1.6	25.1	25.1	25.3	0.2
P	15,121.92	303	1,339	1.5	25.4	25.4	25.6	0.2
Q	15,491.52	155	700	2.8	25.7	25.7	25.9	0.2
R	15,987.84	170	698	2.8	26.5	26.5	26.7	0.2
s	16,489.44	146	798	2.5	27.4	27.4	27.6	0.2
T T	16,700.64	300	1,561	1.3	27.8	27.8	28.0	0.2
Ŭ	17,318.40	240	1,064	1.9	28.2	28.2	28.3	0.1
v	17,550.72	225	1,043	1.9	28.7	28.7	28.8	0.1
Ŵ	17,952.00	232	1,192	1.7	29.2	29.2	29.3	0.1
X	18,448.32	220	769	2.6	29.6	29.6	29.7	0.1
Ŷ	18,949.92	440	1,839	1.1	30.3	30.3	30.4	0.1
Ž	19,451.52	425	1,564	1.3	30.6	30.6	30.8	0.2
_			.,					

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

TABLE 12

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

SOUTH BRANCH RAHWAY RIVER

FLOODING SOU	RCE		FLOODWAY	,	WATER-SURFACE ELEVATION (FEET NAVD)			
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
South Branch Rahway River (continued)								
ÁA	20,048.16 ¹	450	1,395	1.4	31.2	31.2	31.4	0.2
AB	20,312.16 ¹	425	1,471	1.3	31.5	31.5	31.7	0.2
AC	20,887.68 ¹	219	723	2.7	33.2	33.2	33.3	0.1
AD	21,310.08 ¹	155	720	1.9	34.9	34.9	35.0	0.1
AE	21,785.28 ¹	40	310	4.3	36.7	36.7	36.9	0.2
AF	22,424.16 ¹	80	456	2.9	37.6	37.6	37.7	0.1
AG	23,205.60 ¹	75	402	3.3	38.3	38.3	38.5	0.2
AH	23,785 ¹	116	625	0.8	40.5	40.5	40.6	0.1
AI	24,325 ¹	126	767	0.6	40.5	40.5	40.6	0.1
AJ	25,165 ¹	560	2,578	0.2	40.5	40.5	40.6	0.1
AK	26,235 ¹	820	2,184	0.2	40.5	40.5	40.6	0.1
AL	27,185 ¹	350	337	3.6	41.0	41.0	41.1	0.1
AM	27,747 ¹	520	1,237	0.4	43.7	43.7	43.9	0.2
South River								
А	38,000 ²	3,760	16,150	0.4	9.0	7.5 ³	7.7	0.2
В	39,840 ²	3,485	22,210	0.3	9.0	7.5 ³	7.7	0.2
С	45,270 ²	2,585	11,920	0.6	9.0	7.6^{3}	7.8	0.2
D	45,490 ²	390	6,070	1.2	9.0	7.6 ³	7.8	0.2
E	45,840 ²	405	7,220	1.0	9.0	7.6 ³	7.8	0.2
F	48,050 ²	520	7,300	1.0	9.0	7.7 ³	7.9	0.2
G	48,160 ²	515	6,400	1.1	9.0	7.7 ³	7.9	0.2
Н	49,790 ²	1,155	8,930	0.8	9.0	7.7 ³	7.9	0.2
I	53,010 ²	370	4,980	1.4	9.0	7.8 ³	8.0	0.2

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

TABLE

12

FEDERAL EMERGENCY MANAGEMENT AGENCY

FLOODWAY DATA

SOUTH BRANCH RAHWAY RIVER – SOUTH RIVER

							BASE F			
	FLOODING SOUF	RCE		FLOODWA	Y	V	VATER-SURFAC FEET N			
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
So	uth River (continued)									
	J	55,700	430	6,000	1.1	9.0	7.8 ²	8.0	0.2	
	K	60,040	685	6,000	1.1	9.0	7.9 ²	8.1	0.2	
	L	61,870	315	4,420	1.4	9.0	8.0 ²	8.2	0.2	
	Μ	64,910	190	2,480	2.4	9.0	8.1 ²	8.3	0.2	
	N	65,150	420	4,474	1.4	9.0	8.9 ²	9.1	0.2	
	0	66,780	1,576	10,836	0.6	9.0	9.0 ²	9.2	0.2	
	Р	67,660	740	5,318	1.1	9.0	9.0 ²	9.2	0.2	
	Q	68,630	860	6,685	0.9	9.0	9.0 ²	9.2	0.2	
	R	69,070	350	3,459	1.8	9.0	9.0 ²	9.2	0.2	
	S	69,150	360	2,006	3.0	9.0	9.0 ²	9.2	0.2	
	Т	69,860	760	3,317	1.8	9.3	9.3	9.5	0.2	
	U	70,090	595	5,444	1.1	9.6	9.6	9.7	0.1	
	V	70,900	602	5,293	1.1	9.6	9.6	9.8	0.2	
	W	71,960	1,114	8,687	0.7	9.7	9.7	9.8	0.1	
	Х	72,640	1,191	7,161	0.8	9.7	9.7	9.8	0.1	
	Y	74,130	850	4,069	1.5	9.8	9.8	9.9	0.1	
	Z	74,170	780	7,450	0.8	9.9	9.9	10.0	0.1	
	AA	74,300	1,540	11,712	0.5	10.9	10.9	10.9	0.0	
	AB	77,530	708	2,643	2.3	11.0	11.0	11.0	0.0	
	AC	79,720	463	2,385	2.5	12.6	12.6	12.6	0.0	
	AD	81,450	1,994	4,328	1.3	13.9	13.9	14.0	0.1	
	eet above mouth of Raritan Riv									
E	levation computed without cons	sideration of backw	vater effects f	rom Karitan Riv	ver					
	FEDERAL EMERGEN									
			TAGENUT							
TABLI										
Ξ					FLOODWAY DATA					
Ē	MIDDLESE		Y, NJ							
Π			NC)							
	(ALL JURISDICTIONS)									

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

12

SOUTH RIVER

FLOODING SOL	IRCE	FLOODWAY			BASE FLOOD WATER-SURFACE ELEVATION (FEET NAVD)			
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Spa Spring Creek								
A	400 ¹	60	242	3.9	8.6	5.2 ³	5.2	0.0
B C	770 ¹	30	99	9.6	8.6	5.4 ³	5.4	0.0
С	1,355 ¹	57	446	2.1	11.5	11.5	11.5	0.0
D	1,580 ¹	170	908	0.9	11.7	11.7	11.7	0.0
E	2,000 ¹	170	836	1.0	11.7	11.7	11.7	0.0
F	2,335 ¹	117	397	2.1	12.3	12.3	12.3	0.0
G	2,670 ¹	120	261	2.4	13.5	13.5	13.7	0.2
Н	3,100 ¹	82	293	2.1	13.6	13.6	13.8	0.2
Ι	3,420 ¹	40	209	3.0	13.7	13.7	13.9	0.2
Stream 14-14-2-2								
A	30 ²	78	291	1.8	60.2	60.2	60.4	0.2
В	670 ²	137	603	0.9	60.4	60.4	60.6	0.2
С	1,040 ²	27	153	3.3	60.8	60.8	61.0	0.2
D	1,490 ²	27	141	3.6	61.5	61.5	61.7	0.2
E	1,810 ²	19	117	4.4	61.5	61.5	61.7	0.2
F	3,350 ²	578	1,019	0.5	64.4	64.4	64.4	0.0
G	3,710 ²	111	156	3.3	64.4	64.4	64.5	0.1
Н	4,509 ²	203	373	1.4	70.4	70.4	70.6	0.2
I. I	4,990 ²	163	704	0.7	70.5	70.5	70.7	0.2
J	5,360 ²	196	692	0.7	70.8	70.8	71.0	0.2
K	5,810 ²	167	1,011	0.5	73.6	73.6	73.8	0.2
L	6,410 ²	182	645	0.8	73.6	73.6	73.8	0.2
Μ	6,830 ²	66	349	1.5	73.6	73.6	73.8	0.2
Ν	7,130 ²	58	286	1.8	73.7	73.7	73.9	0.2

³Elevation computed without consideration of tidal flooding from Arthur Kill

FEDERAL EMERGENCY MANAGEMENT AGENCY
MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

TABLE

12

FLOODWAY DATA

SPA SPRING CREEK – STREAM 14-14-2-2

	FLOODING SOUR	CE		FLOODWA	Y	v V	BASE F VATER-SURFAC (FEET N	CE ELEVATION				
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE			
Str	eam 14-14-2-3				,							
	A B C D E F G H	210 ¹ 620 ¹ 1,040 ¹ 2,540 ¹ 3,280 ¹ 4,440 ¹ 5,440 ¹	884 312 317 485 210 101 150 96	3,170 1,613 1,532 1,146 588 282 460 292	0.3 0.5 0.7 1.4 2.9 1.8 2.8	64.0 64.0 64.0 64.0 64.0 64.0 65.2 67.2	61.8 ³ 61.9 ³ 62.0 ³ 62.3 ³ 62.8 ³ 65.2 67.2	62.0 62.1 62.2 62.5 63.0 65.3 67.4	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2			
	1	5,890 ¹	146	425	1.9	68.4	68.4	68.6	0.2			
	cker Brook A B C D E F G H I J K L	79,655 ² 80,485 ² 80,555 ² 80,830 ² 81,510 ² 81,840 ² 82,000 ² 82,600 ² 83,010 ² 83,160 83,670 84,390	225 50 100 50 30 30 25 30 40 60 19	990 105 200 205 130 170 225 110 115 188 147 59	0.4 6.9 3.6 3.5 5.5 4.0 3.0 6.2 5.9 3.6 4.4 8.8	34.4 34.4 38.2 38.2 42.3 44.7 46.9 48.9 54.3 57.5 58.8 66.4	$34.2^{4} \\ 34.4^{4} \\ 38.2 \\ 38.2 \\ 42.3 \\ 44.7 \\ 46.9 \\ 48.9 \\ 54.3 \\ 57.5 \\ 58.8 \\ 66.4 \\ \end{cases}$	34.4 34.4 38.2 38.2 42.4 44.7 46.9 48.9 54.4 57.5 58.8 66.4	0.2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0			
² Fe ³ Ele	¹ Feet above confluence with Bound Brook ² Feet above mouth of Raritan River ³ Elevation computed without consideration of backwater effects from Bound Brook ⁴ Elevation computed without consideration of backwater effects from Lawrence Brook											
TABLE	FEDERAL EMERGENC	X COUNT	Y, NJ			FLOO	DWAY DA	ТА				
E 12	(ALL JURISDICTIONS)				STRE	AM 14-14-2	2-3 – SUC	KER BRO	OK			

FLOODING SOL	JRCE		FLOODWA	Y	v	BASE F VATER-SURFAC	CE ELEVATION	
CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	(FEET N WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
Switzgable Brook A B	1,057 ¹ 2,219 ¹	430 400	2,196 1,702	0.3 0.4	79.4 79.4	79.4 79.4	79.5 79.6	0.1 0.2
Ten Mile Run A B C D E F G H I J J	59 ² 346 ² 706 ² 1,326 ² 1,841 ² 2,063 ² 2,513 ² 2,983 ² 3,548 ² 3,998 ²	34 87 25 53 33 101 35 31 17 22	169 325 83 204 110 422 158 118 72 96	4.2 2.2 6.3 2.5 4.7 1.2 2.9 3.9 5.2 4.0	136.7 138.5 139.6 144.4 146.4 152.1 152.2 156.0 164.3 171.1	136.7 138.5 139.6 144.4 146.4 152.1 152.2 156.0 164.3 171.1	136.9 138.7 139.6 144.6 152.3 152.4 156.0 164.4 171.2	0.2 0.2 0.2 0.2 0.2 0.2 0.0 0.1 0.1
	FEDERAL EMERGENCY MANAGEMENT AGENCY				FLOOI	DWAY DA	ТА	
T (ALL JU				SWITZ	GABLE BF		EN MILE F	RUN

	FLOODING SOUR	RCE		FLOODWA	Y	v	BASE F VATER-SURFAC	CE ELEVATION			
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	(FEET N WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
	nnents Brook A B C D E F G H I J K L M N O butary A to Lawrence Brook A B C D E F	58,680 ¹ 60,340 ¹ 62,250 ¹ 63,660 ¹ 64,250 ¹ 69,190 ¹ 70,420 ¹ 73,330 ¹ 74,080 ¹ 76,680 ¹ 77,550 ¹ 78,340 ¹ 78,340 ¹ 78,820 ¹ 79,207 ¹ 300 ² 2,100 ² 3,900 ² 4,800 ²	550 580 370 48 425 331 327 368 166 229 98 26 118 194 114 114 978 1,310 1,053 1,201 875 1,016	3,640 3,260 1,890 300 1,856 1,545 1,006 1,460 456 548 278 78 275 538 262 2,526 3,988 2,967 3,325 2,267 2,707	0.3 0.3 0.6 3.1 0.5 0.6 0.8 0.5 1.7 1.4 2.8 10.0 2.8 1.4 3.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1	9.0 9.0 9.1 9.6 9.9 13.9 14.7 18.0 22.0 23.7 25.7 28.8 30.6 32.0 81.2 81.9 81.9 81.9 81.9 81.9 81.9 81.9	7.8 ³ 7.8 ³ 9.1 9.6 9.9 13.9 14.7 18.0 22.0 23.7 25.7 28.8 30.6 32.0 81.2 81.9 81.9 81.9 81.9 81.9 81.9	8.0 8.0 9.3 9.8 10.1 14.1 14.9 18.2 22.2 23.9 25.7 29.0 30.8 32.1 81.4 82.1 82.1 82.1 82.1 82.1 82.1	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2		
²F€	¹ Feet above mouth of Raritan River ² Feet above confluence with Lawrence Brook ³ Elevation computed without consideration of backwater effects from Raritan Bay										
TABL	FEDERAL EMERGENO					FLOOI	DWAY DA	ТА			
Е	(ALL JUR		•	- H							

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

12

FLOODWAY DATA

TENNENTS BROOK – TRIBUTARY A TO LAWRENCE BROOK

			[[
	FLOODING SOUR	CE		FLOODWA	Y	v	BASE F VATER-SURFAC (FEET N	CE ELEVATION	
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY		WITH FLOODWAY	INCREASE
Tri	butary No. 1 to Sucker ook A B C D butary No. 1 to Ten Mile Run A B C D E F G eet above mouth of Raritan Riv eet above confluence with Ten		20 20 20 20 20 24 12 38 35 30 47 5	48 52 52 49 54 37 195 133 62 155 45	8.3 7.7 7.7 7.3 5.4 7.8 1.5 2.2 4.7 1.9 6.5	59.5 63.2 69.6 76.9 140.4 154.7 154.9 155.9 164.9 172.6 177.3	59.5 63.2 69.6 76.9 140.4 154.7 154.9 155.9 164.9 172.6 177.3	59.7 63.4 69.6 77.1 140.4 154.7 154.9 155.9 164.9 172.6 177.3	0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	FEDERAL EMERGENC	CY MANAGEMEN	T AGENCY						
TABLE	MIDDLESEX COUNTY, NJ		•			FLOOI	DWAY DA	ТА	
	(ALL JURISDICTIONS)								

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

12

TRIBUTARY NO. 1 TO SUCKER BROOK – TRIBUTARY NO. 1 TO TEN MILE RUN

						I					
	FLOODING SOUR	CE		FLOODWA	Y	V	BASE F VATER-SURFAC (FEET N	CE ELEVATION			
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE		
Trib	outary No. 2 to Ten Mile Run A B C D	220 ¹ 490 ¹ 900 ¹ 1,200 ¹	95 62 44 20	143 113 125 147	1.7 2.1 1.9 5.1	151.7 157.6 166.3 170.7	151.7 157.6 166.3 170.7	151.7 157.6 166.4 170.8	0.0 0.0 0.1 0.1		
Trib	outary to Carters Brook A B C	701 ² 1,196 ² 1,526 ²	104 58 34	56 79 45	4.2 3.0 5.2	90.9 101.4 106.7	90.9 101.4 106.7	90.9 101.4 106.8	0.0 0.0 0.1		
Trib	outary to Cedar Brook No. 3 A B C D E	85,795 ³ 86,010 ³ 86,340 ³ 86,505 ³ 88,775 ³	117 107 130 442 95	533 380 352 980 76	0.5 0.7 0.8 0.2 1.6	28.9 29.1 29.1 29.1 34.6	28.9 29.1 29.1 29.1 34.6	29.1 29.2 29.3 29.3 34.6	0.2 0.1 0.2 0.2 0.0		
² Fe	et above confluence with Ten et above confluence with Carte et above mouth of Raritan Rive	ers Brook									
Η	FEDERAL EMERGENCY MANAGEMENT AGENCY										
ABLE	MIDDLESE		•			FLOO	DWAY DA	ТА			
E 12					RIBUTARY NO.	2 TO TEN MILE F TRIBUTARY TO	RUN –TRIBUTA D CEDAR BROG		S BROOK –		

			1			I				
	FLOODING SOUR	CE		FLOODWA	Y	v	BASE F VATER-SURFAC (FEET N	E ELEVATION		
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE	
Tri	butary to Cranbury Brook A B C D E	1,110 ¹ 1,521 ¹ 2,981 ¹ 4,231 ¹ 5,601 ¹	75 116 200 128 162	204 472 578 297 639	2.9 1.3 1.0 1.9 0.9	101.9 105.4 105.9 106.6 111.8	101.9 105.4 105.9 106.6 111.8	101.9 105.5 106.0 106.7 111.9	0.0 0.1 0.1 0.1 0.1 0.1	
Tri	butary to Heathcote Brook A B C D E	710 ² 1,325 ² 2,100 ² 2,430 ² 2,825 ²	120 29 38 25 50	73 69 50 44 61	4.5 4.7 6.5 7.4 5.3	67.3 74.2 83.5 88.2 92.8	67.3 74.2 83.5 88.2 92.8	67.3 74.2 83.5 88.2 92.9	0.0 0.0 0.0 0.0 0.1	
Tri	butary to Lawrence Brook A B C	1,160 ³ 2,110 ³ 2,915 ³	88 34 99	126 65 99	3.0 1.6 1.1	74.0 80.0 81.8	74.0 80.0 81.8	74.1 80.2 81.9	0.1 0.2 0.1	
Tri	butary to Manalapan Brook A B C D	310 ⁴ 552 ⁴ 1,162 ⁴ 2,112 ⁴	97 130 35 270	82 526 72 55	2.0 0.3 1.1 0.4	40.2 41.4 47.0 49.0	37.5 ⁴ 41.4 47.0 49.0	37.6 41.4 47.1 49.2	0.1 0.0 0.1 0.2	
²F∉ ³F€	¹ Feet above confluence with Cranbury Brook ² Feet above confluence with Heathcote Brook ³ Feet above confluence with Lawrence Brook ⁴ Feet above confluence with Manalapan Brook									
TABLE	FEDERAL EMERGENO		Y, NJ			FLOO	DWAY DA	ТА		
E 12					TRIBUTARY TO CRANBURY BROOK – TRIBUTARY TO HEATHCOTE BROOK – TRIBUTARY TO LAWRENCE BROOK – TRIBUTARY TO MANALAPAN BROOK					

	FLOODING SOUR	RCE		FLOODWA	Y	W	BASE F /ATER-SURFAC	E ELEVATION	
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	(FEET N WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
	butary to Mile Run A B C D E F G H I J K L M N O O	90,600 90,970 91,055 91,320 91,840 91,970 92,310 93,210 93,555 94,850 95,280 95,280 95,835 96,170 96,730	430 190 150 80 70 60 40 65 100 80 90 80 80 60 60	1,566 554 779 393 473 462 422 652 764 558 778 694 463 599 201	0.5 1.5 1.1 2.2 1.8 1.8 2.0 1.3 1.1 1.4 0.9 1.0 1.6 1.2 3.0	68.2 68.3 68.3 72.0 72.0 73.7 73.8 73.9 79.4 82.0 82.0 82.0 84.3 84.6	68.2 68.3 68.3 72.0 72.0 73.7 73.8 73.9 79.4 82.0 82.0 82.0 84.3 84.6	68.4 68.5 68.5 72.0 72.1 73.7 73.8 73.9 79.5 82.1 82.1 82.1 84.3 84.6	0.2 0.2 0.2 0.0 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1
TABLE	FEDERAL EMERGENCY MANAGEMENT AGENCY MIDDLESEX COUNTY, NJ					FLOOD)WAY DA	TA	
<u> </u>									

12

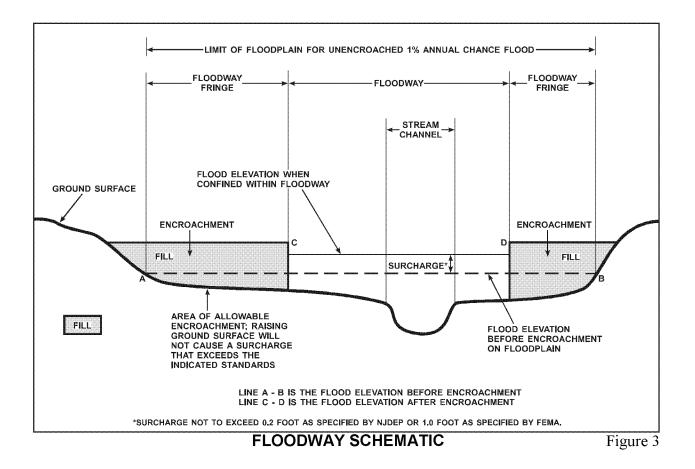
TRIBUTARY TO MILE RUN

						I						
	FLOODING SOUR	CE		FLOODWA	Y	v V	BASE F ATER-SURFAC (FEET N	CE ELEVATION				
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE			
Trik	outary to Millstone River A B C D E	846 ¹ 1,172 ¹ 1,972 ¹ 2,707 ¹ 3,447 ¹	56 54 58 31 145	229 150 37 71 47	0.7 1.1 4.6 2.4 3.6	76.0 76.0 77.5 81.9 87.7	76.0 76.0 77.5 81.9 87.7	76.2 76.2 77.5 82.1 87.7	0.2 0.2 0.0 0.2 0.2 0.0			
Trik	outary to Oakeys Brook A B C D E F G H Dutary to Sawmill pok No. 2 A	660 ² 1,270 ² 2,009 ² 2,659 ² 3,409 ² 3,657 ² 4,131 ² 4,871 ² 370 ³	36 66 93 84 530 110 107 133 710	80 192 119 161 442 56 255 144 1,141	6.5 2.7 4.4 3.2 1.2 9.1 1.8 3.3	106.2 108.5 113.6 116.8 121.5 124.9 128.4 131.6 41.0 ⁴	106.2 108.5 113.6 116.8 121.5 124.9 128.4 131.6 41.0	106.2 108.6 113.6 117.0 121.6 124.9 128.4 131.6 41.0	0.0 0.1 0.0 0.2 0.1 0.0 0.0 0.0 0.0			
² Fe ³ Fe	¹ Feet above confluence with Millstone River ² Feet above confluence with Oakeys Brook ³ Feet above confluence with Sawmill Brook No. 2 ⁴ Elevation computed without consideration of backwater effects from Sawmill Brook No. 2											
TABLE	FEDERAL EMERGENC	X COUNT	Y, NJ			FLOO	DWAY DA	ТА				
E 12	(ALL JUR	ISDICTIO	NS)	٦	RIBUTARY TO	O MILLSTONE RIV TRIBUTARY TO			BROOK –			

							BASE F		
	FLOODING SOUR	CE		FLOODWA	Y	v V		CE ELEVATION	
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
	butary to Six Mile Run anch			,	,				
	A B C D E F G est Branch Mill Brook No. 1	415 ¹ 665 ¹ 1,447 ¹ 1,657 ¹ 1,776 ¹ 2,136 ¹ 2,656 ¹	24 20 66 51 23 34	39 72 98 28 145 38 42	7.2 3.9 2.2 7.7 1.5 5.7 5.1	164.6 168.5 178.4 181.6 186.4 186.5 194.2	164.6 168.5 178.4 181.6 186.4 186.5 194.2	164.6 168.5 178.4 181.6 186.6 186.7 194.2	0.0 0.0 0.0 0.0 0.2 0.2 0.2
	A B C D E	117 ² 317 ² 693 ² 1,017 ² 1,346 ²	114 44 40 43 34	399 193 293 248 561	1.4 3.0 2.0 2.3 1.0	34.7 34.8 39.0 39.2 51.0	34.7 34.8 39.0 39.2 51.0	34.7 34.8 39.0 39.4 51.2	0.0 0.0 0.2 0.2
	eet above confluence with Six N eet above confluence with Mill E								
TABLE	FEDERAL EMERGENO	X COUNT	Y, NJ			FLOOD	WAY DA	ТА	
E 12	(ALL JUR		NS)			JTARY TO S EST BRANCI			1 –

	FLOODING SOUR	CE		FLOODWA	Y	v	BASE F ATER-SURFAC (FEET N	CE ELEVATION	
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
	awam Brook A B C D E F G H I J K L M N N	1,202 1,470 1,770 2,080 2,390 2,760 3,082 3,279 3,569 3,709 4,029 4,029 4,229 4,329 4,329 4,729	170 50 42 33 58 105 111 139 124 112 40 93 33	311 155 78 96 68 98 867 693 457 301 286 61 448 48	2.2 4.4 7.0 5.7 8.1 4.3 0.5 0.6 0.9 1.4 1.5 7.0 0.9 6.9	62.8 64.3 67.5 70.8 74.4 78.5 84.9 84.9 84.9 84.9 85.2 87.8 88.7 89.4	62.8 64.3 67.5 70.8 74.4 78.5 84.9 84.9 84.9 84.9 85.2 87.8 88.7 89.4	62.8 64.3 67.5 70.8 74.4 78.5 84.9 84.9 84.9 84.9 85.3 87.8 88.7 89.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TABLI	FEDERAL EMERGENO	X COUNT	Y, NJ			FLOO	WAY DA	ТА	
E 12	(ALL JUR	ISDICTIO	NS)			WIGW	AM BROO	OK	

							BASE F		
	FLOODING SOUR	RCE		FLOODWA	Y	v	BASE F VATER-SURFAC (FEET N	CE ELEVATION	
	CROSS SECTION	DISTANCE	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
	gwam Brook (continued) O P Q R S S odbridge River A B C D E F G H I J K L J K L M N O P Q R	$5,239^{1}$ $5,664^{1}$ $6,106^{1}$ $6,436^{1}$ $6,816^{1}$ 401^{2} $1,183^{2}$ $2,598^{2}$ $3,817^{2}$ $4,599^{2}$ $5,560^{2}$ $7,001^{2}$ $8,300^{2}$ $10,491^{2}$ $11,400^{2}$ $11,938^{2}$ $12,651^{2}$ $13,960^{2}$ $15,650^{2}$ $17,498^{2}$ $18,997^{2}$ $20,581^{2}$ $21,389^{2}$	59 58 410 177 57 176 176 155 183 160 155 312 183 196 184 80 50 139 390 384 428 301 157	93 57 3,128 466 57 1,637 1,639 1,543 1,712 1,504 1,350 1,737 1,332 1,103 1,069 585 535 1,165 2,097 2,088 2,064 1,704 633	3.5 5.8 0.1 0.7 5.8 1.6 1.6 1.8 2.0 1.3 1.7 2.0 2.1 3.8 4.2 1.4 0.8 0.6 0.6 0.7 1.8	93.6 99.4 109.0 109.1 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	93.6 99.4 109.0 109.0 109.1 5.2^3 5.2^3 5.3^3 5.4^3 5.4^3 5.6^3 5.6^3 5.6^3 5.6^3 5.6^3 5.6^3 5.8^3 6.0^3 6.0^3 6.4^3 7.5^3 7.7^3 8.1^3 8.1^3 8.3^3 8.4^3	93.6 99.5 109.1 109.1 109.1 5.2 5.2 5.3 5.6 5.6 5.7 5.8 5.8 6.0 6.1 6.2 6.6 7.7 7.8 8.2 8.3 8.4 8.6	$\begin{array}{c} 0.0\\ 0.1\\ 0.1\\ 0.1\\ 0.0\\ \end{array}$
² F	eet above confluence with Man eet above confluence with Arthu evation computed without cons	ur Kill	l ooding from A	I Arthur Kill		I	I		
TABL	FEDERAL EMERGENO					FLOOI	DWAY DA	ТА	
т Т	(ALL JUR		•						


MIDDLESEX COUNTY, N	J
(ALL JURISDICTIONS)	

12

FLOODWAY DATA

WIGWAM BROOK – WOODBRIDGE RIVER

							BASE F		
	FLOODING SOUF	RCE		FLOODWA	Y	l v	VATER-SURFAC (FEET N		
	CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
	odbridge River (continued) S T U W X	21,685 23,301 24,299 24,753 25,502 26,331	325 385 255 190 420 486	1,794 1,957 1,315 932 1,870 1,908	0.6 0.6 0.8 0.4 0.3	8.7 8.9 9.0 9.2 9.2	8.7 8.9 9.0 9.2 9.2	8.8 9.0 9.1 9.2 9.4 9.4	0.1 0.2 0.2 0.2 0.2
TABLE	FEDERAL EMERGEN					FLOOI	DWAY DA	ТА	
LE 12	(ALL JUR					WOODB	RIDGE RI	VER	

5.0 **INSURANCE APPLICATIONS**

For flood insurance rating purposes, flood insurance zone designations are assigned to a community based on the results of the engineering analyses. The zones are as follows:

Zone A

Zone A is the flood insurance rate zone that corresponds to the 1-percent annual chance floodplains that are determined in the FIS by approximate methods. Because detailed hydraulic analyses are not performed for such areas, no base flood elevations or depths are shown within this zone.

Zone AE

Zone AE is the flood insurance rate zone that corresponds to the 1-percent annual chance floodplains that are determined in the FIS by detailed methods. In most instances, whole-foot base flood elevations derived from the detailed hydraulic analyses are shown at selected intervals within this zone.

Zone AH

Zone AH is the flood insurance rate zone that corresponds to the areas of 1-percent annual chance shallow flooding (usually areas of ponding) where average depths are between 1 and 3 feet. Whole-foot base flood elevations derived from the detailed hydraulic analyses are shown at selected intervals within this zone.

Zone AO

Zone AO is the flood insurance rate zone that corresponds to the areas of 1-percent annual chance shallow flooding (usually sheet flow on sloping terrain) where average depths are between 1 and 3 feet. Average whole-foot depths derived from the detailed hydraulic analyses are shown within this zone.

Zone AR

Area of special flood hazard formerly protected from the 1-percent annual chance flood event by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1-percent annual chance or greater flood event.

Zone A99

Zone A99 is the flood insurance rate zone that corresponds to areas of the 1-percent annual chance floodplain that will be protected by a Federal flood protection system where construction has reached specified statutory milestones. No base flood elevations or depths are shown within this zone.

Zone V

Zone V is the flood insurance rate zone that corresponds to the 1-percent annual chance coastal floodplains that have additional hazards associated with storm waves. Because approximate hydraulic analyses are performed for such areas, no base flood elevations are shown within this zone.

Zone VE

Zone VE is the flood insurance rate zone that corresponds to the 1-percent annual chance coastal floodplains that have additional hazards associated with storm waves. Whole-foot base flood elevations derived from the detailed hydraulic analyses are shown at selected intervals within this zone.

Zone X

Zone X is the flood insurance rate zone that corresponds to areas outside the 0.2percent annual chance floodplain, areas within the 0.2-percent annual chance floodplain, and to areas of 1-percent annual chance flooding where average depths are less than 1 foot, areas of 1-percent annual chance flooding where the contributing drainage area is less than 1 square mile, and areas protected from the 1-percent annual chance flood by levees. No base flood elevations or depths are shown within this zone.

Zone D

Zone D is the flood insurance rate zone that corresponds to unstudied areas where flood hazards are undetermined, but possible.

6.0 <u>FLOOD INSURANCE RATE MAP</u>

The FIRM is designed for flood insurance and floodplain management applications.

For flood insurance applications, the map designates flood insurance rate zones as described in Section 5.0 and, in the 1-percent annual chance floodplains that were studied by detailed methods, shows selected whole-foot base flood elevations or average depths. Insurance agents use the zones and base flood elevations in conjunction with information on structures and their contents to assign premium rates for flood insurance policies.

For floodplain management applications, the map shows by tints, screens, and symbols, the 1- and 0.2-percent annual chance floodplains. Floodways and the locations of selected cross sections used in the hydraulic analyses and floodway computations are shown where applicable.

This countywide FIRM presents flooding information for the entire geographic area of Middlesex County. Previously, separate Flood Hazard Boundary Maps and/or FIRMs were prepared for each identified flood-prone incorporated community and the unincorporated areas of the county. This countywide FIRM also includes flood hazard information that was presented separately on Flood Boundary and Floodway Maps (FBFMs), where applicable. Historical data relating to the maps prepared for each community, up to and including this countywide FIS, are presented in Table 13, "Community Map History."

7.0 <u>OTHER STUDIES</u>

Information pertaining to revised and unrevised flood hazards for each jurisdiction within Middlesex County has been compiled into this FIS. Therefore, this FIS supersedes all previously printed FIS Reports, Wave Height Analyses Supplements to FIS reports, FHBMs, FBFMs, and FIRMs for all of the incorporated jurisdictions within Middlesex County.

8.0 **LOCATION OF DATA**

Information concerning the pertinent data used in preparation of this FIS can be obtained by contacting FEMA, Federal Insurance and Mitigation Division, 26 Federal Plaza, Room 1337, New York, New York 10278.

COMMUNITY	INITIAL	FLOOD HAZARD BOUNDARY MAP	FIRM	FIRM
NAME	IDENTIFICATION	REVISIONS DATE	EFFECTIVE DATE	REVISIONS DATE
Carteret, Borough of	January 9, 1974	None	November 15, 1978	April 15,1992 July 6, 2010
Cranbury, Township of	May 10, 1974	December 27, 1974	May 17, 1982	July 6, 2010
Dunellen, Borough of	August 31, 1973	None	April 1, 1977	February 4, 1988 July 6, 2010
East Brunswick, Township of	January 23,1974	April 15, 1977	January 6, 1982	September 18, 1986 May 3, 1990 July 6, 2010
Edison, Township of	December 28, 1973	June 4, 1976	August 16, 1982	June 19, 1985 July 6, 2010
Helmetta, Borough of	June 28, 1974	February 27, 1976	October 16, 1984	July 6, 2010
Highland Park, Borough of	April 20, 1973	None	June 1, 1977	July 6, 2010
Jamesburg, Borough of	June 28, 1974	February 6, 1976	May 15, 1984	July 6, 2010
Metuchen, Borough of	November 5, 1976	None	December 4, 1979	July 6, 2010
Middlesex, Borough of	July 10, 1971	None	July 10, 1971	July 1, 1974 January 9, 1976 March 18, 1986 July 6, 2010
Milltown, Borough of	May 3, 1974	July 2, 1976	February 4, 1981	July 6, 2010

FEDERAL EMERGENCY MANAGEMENT AGENCY

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

TABLE 13

COMMUNITY MAP HISTORY

COMMUNITY	INITIAL	FLOOD HAZARD BOUNDARY MAP	FIRM	FIRM
NAME	IDENTIFICATION	REVISIONS DATE	EFFECTIVE DATE	REVISIONS DATE
Monroe, Township of	March 8, 1974	January 7, 1977	April 17, 1985	April 3, 1987 November 6, 1991 September 30, 1995 February 4, 1998 July 6, 2010
New Brunswick, City of	June 15, 1973	March 19, 1976	December 4, 1979	July 6, 2010
North Brunswick, Township of	June 28, 1974	None	May 1, 1980	July 6, 2010
Old Bridge, Township of	June 28, 1974	April 30, 1976 October 23, 1981	November 15, 1985	October 16, 1987 August 3, 1992 July 6, 2010
Perth Amboy, City of	June 21, 1974	June 4, 1976	December 18, 1979	May 1, 1984 July 6, 2010
Piscataway, Township of	June 28, 1974	June 4, 1976	January 18, 1984	July 6, 2010
Plainsboro, Township of	May 31, 1974	July 9, 1976	June 19, 1985	July 6, 2010
Sayreville, Borough of	December 28, 1973	April 16, 1976	March 16, 1981	January 16, 1987 July 6, 2010
South Amboy, City of	February 1, 1974	December 12, 1975	December 4, 1979	June 1, 1983 September 4, 1986 July 6, 2010
South Brunswick, Township of	January 16, 1974	September 24, 1976	December 18, 1985	July 6, 2010

FEDERAL EMERGENCY MANAGEMENT AGENCY

MIDDLESEX COUNTY, NJ (ALL JURISDICTIONS)

TABLE 13

COMMUNITY MAP HISTORY

		FLOOD HAZARD		
				FIRM
				REVISIONS DATE
South Plainfield, Borough of	February 22, 1974	March 5, 1976	August 1, 1980	July 6, 2010
South River, Borough of	April 5, 1974	March 5, 1976	June 4, 1980	September 18, 1986 July 6, 2010
Spotswood, Borough of	July 6, 1973	March 5, 1976	December 18, 1979	August 20, 1982 February 16, 1990 July 6, 2010
Woodbridge, Township of	June 2, 1972	None	June 2, 1972	July 1, 1974 April 30, 1976 September 1, 1983 July 6, 2010
FEDERAL EMERGENCY MANAGEME				
		COM	MUNITY MAP I	HISTORY
	Spotswood, Borough of Woodbridge, Township of FEDERAL EMERGENCY MANAGEME	NAMEIDENTIFICATIONSouth Plainfield, Borough ofFebruary 22, 1974South River, Borough ofApril 5, 1974Spotswood, Borough ofJuly 6, 1973	COMMUNITY NAME INITIAL IDENTIFICATION BOUNDARY MAP REVISIONS DATE South Plainfield, Borough of February 22, 1974 March 5, 1976 South River, Borough of April 5, 1974 March 5, 1976 Spotswood, Borough of July 6, 1973 March 5, 1976 Woodbridge, Township of June 2, 1972 None	COMMUNITY NAME INITIAL IDENTIFICATION BOUNDARY MAP REVISIONS DATE FIRM EFFECTIVE DATE South Plainfield, Borough of February 22, 1974 March 5, 1976 August 1, 1980 South River, Borough of April 5, 1974 March 5, 1976 June 4, 1980 Spotswood, Borough of July 6, 1973 March 5, 1976 December 18, 1979 Woodbridge, Township of June 2, 1972 None June 2, 1972 FEDERAL EMERGENCY MANAGEMENT AGENCY MIDDLESEX COUNTY, NJ COMMUNITY MAP

9.0 **<u>BIBLIOGRAPHY AND REFERENCES</u>**

Abrams Aerial Survey. (Perth Amboy, New Jersey, January 1976). <u>Aerial Contour</u> <u>Maps</u>, Scale 1:6,000, Contour Interval 2 feet.

A. D. R. Associates, Inc. (Township of Plainsboro, Middlesex County, New Jersey, 1973). <u>Topographic Maps</u> compiled from aerial photographs, Scale 1"=100', Contour Interval 2 Feet.

Aero Service, Inc. (1966). <u>Topographic Maps of Borough of South Plainfield</u>, New Jersey, Scale 1:2,400 and 1:4,800, Contour Interval 1 and 2 feet.

Anderson-Nichols & Co., Inc. (Dunnellen, New Jersey, December 1982). <u>Topographic</u> <u>Maps</u>, Scale 1:2,400, Contour Interval 10 feet.

Anderson-Nichols and Company, Inc., for the State of New Jersey, Department of Environmental Protection, Division of Water Resources. (1973). <u>Flood Hazard Report</u> <u>No. 15: Delineation of Flood Hazard Areas, Raritan River Basin, Bound Brook, Cedar Brook</u>.

A. O. Quinn and Associates of Horsham, Pennsylvania. (South River, New Jersey, 1968). <u>Topographic Maps</u> compiled from aerial photographs, Scale 1:2,400, Contour Interval 5 feet.

A. O. Quinn and Associates. (1968). <u>Photogrammetric Mapping</u>. Horsham, Pennsylvania.

Beard, Leo R. (1962). Statistical Methods in Hydrology.

Borough of Sayreville. (December 1973 and January 1974). <u>Street Map and Zoning</u> <u>Map</u>. Sayreville, New Jersey.

Borough of South Plainfield. (January 1974). Storm Sewerage and Drainage Improvements, <u>Topographic Maps of the Borough of South Plainfield</u>, reduced to scale 1:9,600, Contour Interval 5 feet.

Borough of South River. (January 1976). Street Map. South River, New Jersey.

Borough of South River. (January 1972). Zoning Map. South River, New Jersey.

Borough of South River. (1970). <u>History of South River</u>. South River, New Jersey.

Candeub and Sliessig Associates. (1976). <u>Borough of Metuchen, Environmental</u> <u>Resources Inventory</u>.

Candeub and Sliessig Associates. (1967). Borough of Metuchen, Master Plan.

City of New Brunswick. (February 14, 1969). <u>Report Upon Stream Improvements and</u> <u>Flood Relief for Mile Run</u>. Elson T. Killam Associates, Inc. (author). New Jersey. County of Middlesex, New Jersey, Office of County Engineer. <u>Existing Aerial</u> <u>Topographic Maps – Deep Run Area, Old Bridge Township, New Jersey</u>, Scale 1:600, Contour Interval 1 foot.

D. Johnstone and W. P. Cross. (1949). <u>Elements of Applied Hydrology</u>. Ronald Press Company. New York.

Elson T. Killam Associates, Inc. (1976). <u>Heards Brook Channel Improvement Design</u> <u>Plans</u>. Milburn, New Jersey.

Elson T. Killam Associates, Inc. (1974). <u>Report to the Township of Woodbridge on the Woodbridge River</u>. Milburn, New Jersey.

Elson T. Killam Associates, Inc. (August 1972). <u>Storm Drainage Plan and Program for</u> <u>Middlesex County, New Jersey</u>. Trenton, New Jersey.

Elson T. Killam Associates, Inc., prepared for the Township of East Brunswick (November 1966). <u>Report on Basis of Design of Storm Drainage Improvements</u>. New Jersey.

Federal Emergency Management Agency. (May 3, 1990). <u>Flood Insurance Study</u>, <u>Township of East Brunswick</u>, <u>Middlesex County</u>, <u>New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (February 16, 1990). <u>Flood Insurance Study</u>, <u>Borough of Spotswood, Middlesex County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (October 16, 1987). <u>Flood Insurance Study</u>, <u>Township of Old Bridge</u>, <u>Middlesex County</u>, <u>New Jersey</u>.

Federal Emergency Management Agency, Federal Insurance Administration. (April 3, 1987). Flood Insurance Study, Township of Monroe, Middlesex County, New Jersey.

Federal Emergency Management Agency. (January 16, 1987). <u>Flood Insurance Study.</u> Borough of Sayreville, Middlesex County, New Jersey. Washington, D.C.

Federal Emergency Management Agency. (September 18, 1986). <u>Flood Insurance</u> <u>Study, Borough of South River, Middlesex County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (September 18, 1986). <u>Flood Insurance Study, Township of East Brunswick, Middlesex</u> <u>County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (December 18, 1985). <u>Flood Insurance Study, Township of South Brunswick, Middlesex</u> <u>County, New Jersey</u>.

Federal Emergency Management Agency. (June 19, 1985). <u>Flood Insurance Study</u>, <u>Township of Edison, Middlesex County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (March 18, 1985). <u>Flood Insurance Study</u>, <u>Township of Aberdeen, Monmouth County</u>, New Jersey. Washington, D.C.

Federal Emergency Management Agency. (October 16, 1984). <u>Flood Insurance Study</u>, <u>Borough of Helmetta, Middlesex County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (May 15, 1984). <u>Flood Insurance Study</u>, <u>Borough of Jamesburg, Middlesex County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (September 1, 1983). <u>Flood Insurance Study</u>, <u>Township of Woodbridge</u>, <u>Middlesex County</u>, <u>New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (July 18, 1983). <u>Flood Insurance Study</u>, <u>Township of Piscataway</u>, <u>Middlesex County</u>, <u>New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (June 9, 1983). <u>Flood Insurance Study</u>, <u>Township of Piscataway</u>, <u>Middlesex County</u>, <u>New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (June 1, 1983). <u>Flood Insurance Study, City</u> of South Amboy, Middlesex County, New Jersey. Washington, D.C.

Federal Emergency Management Agency. (May 16, 1983). <u>Flood Insurance Study, City</u> of New York, Bronx, Queens, New York, Kings, and Richmond Counties, New York. Washington, D.C.

Federal Emergency Management Agency. (March 16, 1983). <u>Flood Insurance Study</u>, <u>Township of East Windsor, Mercer County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (March 1, 1983). <u>Flood Insurance Study</u>, <u>Township of Woodbridge</u>, <u>Middlesex County</u>, <u>New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (February 15, 1983). <u>Flood Insurance Study</u>, <u>Borough of Bound Brook, Somerset County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (May 17, 1982). <u>Flood Insurance Study.</u> <u>Township of Cranbury, Middlesex County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (April 9, 1982). <u>Flood Insurance Study</u>, <u>Township of Marlboro, Monmouth County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (March 30, 1982). <u>Flood Insurance Study.</u> Borough of South Bound Brook, Somerset County, New Jersey. Washington, D.C.

Federal Emergency Management Agency. (March 2, 1982). <u>Flood Insurance Study</u>, <u>Township of Clark, Union County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (January 20, 1982). <u>Flood Insurance Study, Township of Millstone, Monmouth County,</u> <u>New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency. (Revised February 1981). <u>Users Manual for</u> <u>Wave Height Analysis</u>. Washington, D.C. Federal Emergency Management Agency, Federal Insurance Administration. (May 15, 1980). <u>Flood Insurance Study, Township of Franklin, Somerset County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (May 1, 1980). <u>Flood Insurance Study, Township of North Brunswick, Middlesex County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (April 22, 1980). <u>Statement of Work for Modifications of Flood Insurance Studies to Include Wave Crest Elevations</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (February 1, 1980). <u>Flood Insurance Study, Borough of South Plainfield, Middlesex</u> <u>County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (December 18, 1979). <u>Flood Insurance Study, City of Perth Amboy, Middlesex County,</u> <u>New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (December 4, 1979). <u>Flood Insurance Study, City of New Brunswick, Middlesex</u> <u>County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (July 16, 1979). <u>Flood Insurance Study, Borough of Madison, Middlesex County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (June 18, 1979). <u>Flood Insurance Study, Borough of Spotswood, Middlesex County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (June 4, 1979). <u>Flood Insurance Study, Borough of Metuchen, Middlesex County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (June 1, 1978). <u>Flood Insurance Study, Township of Bridgewater, Somerset County, New Jersey</u>. Washington, D.C.

Federal Emergency Management Agency, Federal Insurance Administration. (Unpublished). <u>Flood Insurance Study, Township of Plainsboro, Middlesex County, New Jersey</u>.

Federal Emergency Management Agency. (Unpublished). <u>Flood Insurance Study.</u> <u>Township of Green Brook, Somerset County, New Jersey</u>.

Federal Emergency Management Agency. (Unpublished). <u>Flood Insurance Study</u>, <u>Township of Princeton</u>, <u>Mercer County</u>, <u>New Jersey</u>.

Federal Emergency Management Agency. (Unpublished). <u>Flood Insurance Study</u>, <u>Township of West Windsor, Mercer County</u>, New Jersey.

Federal Emergency Management Agency, Federal Insurance Administration. (Unpublished). <u>Flood Insurance Study, City of Rahway, Union County, New Jersey</u>.

Federal Emergency Management Agency, Federal Insurance Administration. (Unpublished). <u>Flood Insurance Study, Township of Clark, Union County, New Jersey</u>.

GEOD Aerial Mapping, Inc., of Oak Ridge, New Jersey. (Township of East Brunswick, Middlesex County, New Jersey, 1976; Dismal Brook, Mill Brook, and Bonhamtown Brook, March 1976 and March 1979, City of New Brunswick, Middlesex County, 1975; Township of North Brunswick, Middlesex County, Oak Ridge, New Jersey, 1976; South River, New Jersey, 1976). Orthophotographic Maps, Scale 1:2,400, Contour Interval 5 feet.

GEOD Aerial Mapping, Inc. (Oak Ridge, New Jersey, 1976). <u>Orthophotographic Maps</u>, Scale 1:200, Contour Interval 5 feet.

GEOD Aerial Mapping, Inc. (Lawrence River, Borough of Milltown, Middlesex County, Oak Ridge, New Jersey, 1976). <u>Topographic Maps</u>, Scale 1:2,400, Contour Interval 5 feet.

Geod Corporation. (New Jersey, March 1976; Borough of Sayreville, New Jersey, 1976). <u>Photographic Maps</u>, Scale 1:2,400, Contour Interval 5 feet.

Hammer, Greene, Siler Associates, prepared for the Middlesex County Planning Board. (June 1969). <u>Population, Housing, and Income Study, Middlesex County Study Area,</u> <u>New Jersey</u>.

Kemble and Widner. (1964). <u>The Geology and Geography of New Jersey</u>, New Jersey Historical Series, Volume 19. D. Van Nostrand Company, Inc. Princeton, New Jersey.

Keystone Aerial Survey, Inc., of Philadelphia, Pennsylvania. (March 1979). <u>Aerial</u> <u>Photographs, Township of Woodbridge, New Jersey, Scale 1:1,000</u>.

Lockwood, Kessler, and Bartlett, Inc. (July 1964). <u>Preliminary Plans, Storm Sewerage</u> and Drainage Improvements, Borough of South Plainfield, Middlesex County, New Jersey.

Lynch, Carmody & Dombrowski, of Monroe, New Jersey. (Monroe, New Jersey, September 1976). <u>Clearbrook Asbuilt and Grading Plan</u>, Scale 1:240, Contour Interval 1 foot.

Metuchen Chamber of Commerce. (1973). This is Metuchen.

Middlesex County Planning Board. (August 1972). Comprehensive Plan No. 24, <u>Storm</u> Drainage Plan and Program. New Brunswick, New Jersey.

Middlesex County Planning Board. (May 1970). <u>Land Use Inventory and Analysis,</u> <u>Terminal Facilities, A Locational Analysis, Forecasts 1985-2000: People, Jobs, and</u> <u>Land</u>.

National Academy of Sciences. (1977). <u>Methodology for Calculating Wave Action</u> <u>Effects Associated with Storm Surges</u>. Washington, D.C.

National Hurricane Research Project. (March 1957). Report No. 5, "Summary of Meteorological Factors Pertinent to Reduction of Loss of Life and Property in Hurricane Situations."

National Resources Committee. (1938). <u>Modified Rational Method of Estimating Flood</u> <u>Flows</u>. M. Bernard (author). Washington, D.C.

New Jersey Department of Conservation and Economic Development and the Division of Water Policy and Supply, in cooperation with the U.S. Department of the Interior, Geological Survey. (1964). "Flood Depth Frequency in New Jersey," Circular 14.

New Jersey Department of Environmental Protection, Division of Water Resources. (February 1973). Flood Hazard Report No. 15, <u>Delineation of Flood Hazard Areas</u>, Raritan River Basin, Bound Brook – Cedar Brook.

Personal phone conversation. (October 1995). U.S. Department of Commerce, Bureau of the Census. Washington, D.C.

Quinn and Associates of Horsham, Pennsylvania. (Township of Cranbury, New Jersey, 1977; Middlesex, New Jersey, 1968). <u>Topographic Maps</u>, compiled from aerial photographs, Scale 1:2,400, Contour Interval 5 feet.

Quinn and Associates of Horsham, Pennsylvania. (Middlesex, New Jersey, 1971). <u>Topographic Maps</u> compiled from aerial photographs, scale 1:1,200, Contour Interval 2 feet.

Quinn and Associates of Horsham, Pennsylvania. (Borough of Helmetta, Middlesex County, 1970, Revised 1976; Jamesburg, New Jersey, 1970, Revised 1976; Township of Plainsboro, Middlesex County, Pennsylvania, 1976; South Brunswick, New Jersey, 1976). <u>Topographic Maps</u> compiled from aerial photographs, Scale 1"=200', Contour Interval 5 feet.

Quinn and Associates of Horsham, Pennsylvania. (Township of Cranbury, New Jersey, December 1976). <u>Aerial Photographs</u>, Scale 1:2,400.

Quinn and Associates of Horsham, Pennsylvania. (Monroe, New Jersey, December 1976). <u>Topographic Maps</u> compiled from aerial photographs, Scale 1:2,400, Contour Interval 5 feet.

Quinn and Associates of Horsham, Pennsylvania. (South Brunswick, New Jersey, 1975). <u>Aerial Photographs</u>, Scale 1"=1,000'.

Raritan Valley Regional Chamber of Commerce. <u>Middlesex county Industrial Directory</u>. Trenton, New Jersey.

Real Estate Data, Inc. (August 1976). <u>Real Estate Atlas of Middlesex County, New</u> Jersey, Scale 1:12,000.

Schoor, DePalma & Gillen, Inc., of Matawan, New Jersey. (Borough of Spotswood, Middlesex County, New Jersey, April 24, 1978). <u>Topographic Maps</u>, Scale 1:100, Contour Interval 2 feet.

State of New Jersey, Department of Environmental Protection. (1976). <u>Photogrammetric</u> <u>Mapping</u>. New Jersey.

State of New Jersey, Department of Environmental Protection, and Anderson-Nichols and Company, Inc. (Revised 1982). Flood Hazard Report No. 2, <u>Delineation of Flood</u> <u>Hazard Areas, Raritan River</u>. Trenton, New Jersey.

State of New Jersey, Department of Labor and Industry. (December 1981). <u>New Jersey</u> <u>Population per Household, 1970 & 1980</u>. Trenton, New Jersey.

State of New Jersey, Department of Labor and Industry. (March 1981). <u>New Jersey</u> <u>1980 Census Counts of Population and Housing</u>. Trenton, New Jersey.

State of New Jersey. (January 1975). <u>Population Estimates for New Jersey</u>, Official <u>State Estimates</u>. Trenton, New Jersey.

State of New Jersey, Department of Environmental Protection, Division of Water Resources, prepared by Anderson-Nichols & Company, Inc. (March 1973). <u>Flood</u> <u>Hazard Report No. 17, Matchaponix Brook System</u>. Trenton, New Jersey.

State of New Jersey, Department of Environmental Protection, Division of Water Resources. (March 1973). Flood Hazard Report No. 2, <u>Delineation of Flood Hazard Areas, Matchaponix Brook System</u>. Trenton, New Jersey.

State of New Jersey, Department of Environmental Protection, Division of Water Resources. (February 1973). <u>Delineation of Flood Hazard Areas, Raritan River Basin,</u> <u>Flood Hazard Report No. 12, Millstone River-Rocky Brook</u>. Trenton, New Jersey.

State of New Jersey, Department of Environmental Protection, and Anderson-Nichols and Company, Inc. (February 1973). Flood Hazard Report No. 15, <u>Delineation of Flood</u> <u>Hazard Areas, Raritan River Basin, Bound Brook and Cedar Brook</u>. Trenton, New Jersey.

State of New Jersey, Department of Environmental Protection, Division of Water Resources. (October 1972). <u>Delineation of Flood Hazard Areas, Flood Hazard Report</u> <u>No. 8, South River and Manalapan Brook</u>. Trenton, New Jersey.

State of New Jersey, Department of Environmental Protection, Division of Water Resources. (September 1972). <u>Delineation of Flood Hazard Areas, Flood Hazard Report</u> <u>No. 7, Lawrence Brook</u>. Trenton, New Jersey. State of New Jersey, Department of Environmental Protection, Division of Water Resources. (March 1972). <u>Delineation of Flood Hazard Areas, Flood Hazard Report No.</u> 2, <u>Raritan River</u>. Trenton, New Jersey.

State of New Jersey, Department of Environmental Protection. (1972). <u>Delineation of Flood Hazard Areas, Raritan River Basin, Flood Hazard Report No. 3 – Green Brook</u>. Trenton, New Jersey.

State of New Jersey, Department of Environmental Protection. (April 26, 1971). <u>Topographic Maps of the Borough of South Plainfield, New Jersey</u>, Scale 1:2,400, Contour Interval 2 feet.

State of New Jersey, Department of Environmental Protection, Division of Water Resources, Bureau of Floodplain Management. (Unpublished). <u>Supplemental Flood</u> Hazard Study X.

State of New Jersey, Department of Conservation and Economic Development, Division of Water Policy and Supply, in cooperation with the U.S. Department of the Interior, Geological Survey. (February 1969). <u>Extent and Frequency of Floods in Upper Millstone River Basin in Vicinity of Hightstown, New Jersey</u>. George M. Farlekas (author). Trenton, New Jersey.

State of New Jersey, Bureau of Geology and Topography. (1969). <u>The Story of New</u> Jersey's Civil Boundaries, 1606-1968. John P. Snyder (author). Trenton, New Jersey.

State of New Jersey, Department of Conservation and Economic Development, Division of Water Policy and Supply. (1964). Water Resources Circular No. 14, <u>Flood Depth-Frequency in New Jersey</u>. Trenton, New Jersey.

State of New Jersey, Department of Conservation and Economic Development. (June 1951). <u>Flood Runoff Index Curves</u>. Trenton, New Jersey.

State of New Jersey, Department of Environmental Protection, Division of Water Resources. <u>Existing Topographic Maps Compiled from Aerial Photographs</u>, Scale 1:2,400, Contour Interval 5 feet. Old Bridge, New Jersey.

Tetra Tech, Inc. (May 1977). <u>Coastal Flooding Handbook, Parts I and II</u>. Pasadena, California.

T & M Associates. (February 1981). <u>Ambrose – Doty's Brooks Flood Control Study</u>. Red Bank, New Jersey.

Topographic Data Consultants, Inc., of New Jersey. (Old Bridge, New Jersey, May 1980). <u>Aerial Photographs</u>, Scale 1:960.

Topographic Data Consultants, Inc., of Berlin, New Jersey. (Old Bridge, New Jersey, October 1980). <u>Topographic Maps</u>, Scale 1:4,800, Contour Interval 4 feet.

<u>Topographic Map of the Borough of Carteret, New Jersey</u>, Scale 1:7,200, Contour Interval 10 feet. (November 1975).

Topographic Map of Township of Piscataway, Middlesex County, New Jersey. (January 3, 1973). Scale 1:1,200, Reduced to 1:4,800, Contour Interval 2 feet.

Township of Edison. (Robinsons Branch and Robinsons Branch Tributary, 1970). <u>Topographic Maps</u>, Scale 1:4,800, Contour Interval 2 feet.

Township of Monroe. (1968, Revised January 31, 1975). <u>Map of Township of Monroe</u>, <u>Middlesex County, New Jersey</u>, Scale 1"=1,000'.

Township of North Brunswick. (February 1975). Street Map.

Township of South Brunswick, Engineering Department. (February 28, 1975). <u>Topographic Stream Maps</u>, Scale 1"=100', Contour Interval 2 feet.

Township of Woodbridge, New Jersey. (1961). <u>Topographic Mapping</u>, Scale 1:2,400, Contour Interval 2 feet.

Union County Planning Board. (September 1975). <u>Regional Flood Control Plan for</u> <u>Cedar Brook, Feasibility Study, Union County, New Jersey</u>.

U.S. Army Corps of Engineers, Hydrologic Engineering Center. (April 2004). <u>HEC-RAS River Analysis System, Version 3.1.2</u>. Davis, California.

U.S. Army Corps of Engineers, Hydrologic Engineering Center. (November 1976). Special Projects Memo No. 469, Hydrologic-Hydraulic Simulation, Rahway River Basin, New Jersey. Davis, California.

U.S. Army Corps of Engineers, Galveston District. (1975). <u>General Guidelines for</u> <u>Identifying Coastal High Hazard Zones</u>. Galveston, Texas.

U.S. Army Corps of Engineers, New York District. (1975). <u>Special Flood Hazard</u> <u>Information Report for the Rahway River</u>. New York.

U.S. Army Corps of Engineers, New York District. (1975). <u>Special Flood Hazard</u> <u>Information Report for the South Branch Rahway River</u>. New York.

U.S. Army Corps of Engineers, New York District. (1974). <u>Feasibility Report for Flood</u> <u>Control for Robinsons Branch of the Rahway River</u>. New York.

U.S. Army Corps of Engineers, Hydrologic Engineering Center. (October 1973). <u>HEC-2</u> <u>Water-Surface Profiles, Generalized Computer Program</u>. Davis, California.

U.S. Army Corps of Engineers, New York District. (1973). <u>Cross Section Data for the</u> <u>Rahway River and South Branch Rahway River</u>. New York.

U.S. Army Corps of Engineers. (1973, Unpublished). <u>Green Brook Subbasin of the</u> <u>Raritan River Basin Interim Survey Report for Flood Control</u>. New York, New York. U.S. Army Corps of Engineers, New York District, prepared for the Monmouth County Planning Board and the New Jersey Department of Environmental Resources. (July 1972). <u>Tidal Flood Plain Information, Sandy Hook Bay and Raritan Bay Shore Areas, Monmouth County, New Jersey</u>. New York.

U.S. Army Corps of Engineers, New York District. (November 1960). <u>Raritan Bay and Sandy Hook Bay, New Jersey, Cooperative Beach Erosion Control and Interim Hurricane Study</u>. New York.

U.S. Department of Agriculture, Soil Conservation Service. (August 1972). <u>National</u> <u>Engineering Handbook, Section 4, Hydrology</u>. Washington, D.C.

U.S. Department of Agriculture, Soil Conservation Service. (1965). Technical Release No. 20, <u>Computer Program, Project Formulation, Hydrology</u>. Washington, D.C.

U.S. Department of Commerce, National Oceanic and Atmospheric Administration. (1975). <u>Tropical Cyclone Deck 993</u>. Asheville, North Carolina. National Climatic Center.

U.S. Department of Commerce, National Oceanic and Atmospheric Administration. (May 1975). Technical Report NWS-15, <u>Some Climatological Characteristics of Hurricanes and Tropical Storms, Gulf and East Coasts of the U.S.</u> F. P. Ho, R. W. Schwerdt, and H. B. Goodyear (authors). Asheville, North Carolina. National Climatic Center.

U.S. Department of Commerce, Bureau of the Census. (1971). <u>1970 Census of</u> <u>Population, Number of Inhabitants, New Jersey</u>. Washington, D.C. U.S. Government Printing Office.

U.S. Department of Commerce. (April 1970). ESSA Technical Memorandum WBTM, Hydro 11, Joint Probability Method of Tide Frequency Analysis Applied to Atlantic City and Long Beach Island, New Jersey. V. A. Meyers (author). Washington, D.C.

U.S. Department of Commerce, Weather Bureau. (1965). Technical Paper No. 55, <u>Tropical Cyclones of the North Atlantic Ocean, 1871-1963</u>. C. W. Cry (author). Washington, D.C.

U.S. Department of Commerce, Weather Bureau. (1961, Revised 1963). Technical Paper No. 40, <u>Rainfall Frequency Atlas of the United States</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (Flood Insurance Study report dated May 1978, Flood Insurance Rate Map dated November 15, 1978). <u>Flood Insurance Study, Borough of Carteret, Middlesex County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (June 1, 1977). <u>Flood Insurance Study, Borough of Highland Park, Middlesex County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (March 30, 1977). <u>Flood Insurance Study, Township of Scotch Plains, Union County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (March 15, 1977). <u>Flood Insurance Study, Township of Manalapan, Monmouth County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (November 24, 1976). <u>Flood Insurance Study, City of Linden, Union County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (October 1, 1976). <u>Flood Insurance Study, Borough of Dunellen, Middlesex County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (September 15, 1976). <u>Flood Insurance Study, Township of Green Brook, Somerset</u> <u>County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (July 1976). <u>Flood Hazard Boundary Map, Borough of Milltown, Middlesex County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (January 9, 1976). <u>Flood Insurance Study, Borough of Middlesex, Middlesex County, New Jersey</u>. Washington, D.C.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (February 18, 1975). <u>Flood Hazard Boundary Map, Borough of Helmetta, Middlesex</u> <u>County, New Jersey</u>.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (June 28, 1974). <u>Flood Hazard Boundary Map, Borough of Jamesburg, Middlesex County,</u> <u>New Jersey</u>.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (May 31, 1974). <u>Flood Hazard Boundary Map, Township of Plainsboro, Middlesex</u> <u>County, New Jersey</u>.

U.S. Department of Housing and Urban Development, Federal Insurance Administration. (June 15, 1973). <u>Flood Hazard Boundary Map, City of New Brunswick, Middlesex</u> <u>County, New Jersey</u>. U.S. Department of the Interior, Geological Survey. (Arthur-Kill, New York-New Jersey, 1981; New Brunswick, New Jersey, 1970; South Amboy, New Jersey, 1970; New Brunswick, New Jersey, 1954, Photorevised 1970; Jamesburg, New Jersey, 1953, Photorevised 1970; Freehold, New Jersey, 1953, Photorevised 1970; Hightstown, New Jersey, 1954, Photorevised 1970; Monmouth Junction, New Jersey, 1954, Photorevised 1970). 7.5-Minute Series Topographic Map, Scale 1:24,000, Contour Interval 10 feet.

U.S. Department of the Interior, Geological Survey. (August 1978). <u>Log-Pearson Type</u> <u>III Flood Frequency Analysis</u>. Reston, Virginia.

U.S. Department of the Interior, Geological Survey, Water Resources Division. (August 1976). <u>Gage Data, Expanded Rating Tables</u>. Washington, D.C.

U.S. Department of the Interior, Geological Survey. (June 1976). <u>Water Resources Data</u> for New Jersey, Water Year 1975. Trenton, New Jersey.

U.S. Department of the Interior, Geological Survey. (1976). Water Data Report Nj-75-1, <u>Water Resources Data for New Jersey</u>. Washington, D.C.

U.S. Department of the Interior, Geological Survey. (Published Annually, 1976-1979). Water Resources Data for New Jersey, Part I, Surface Water Records. Trenton, New Jersey.

U.S. Department of the Interior, Geological Survey. in cooperation with New Jersey Department of Environmental Protection (1974). Special Report 38, <u>Magnitude and Frequency of Floods in New Jersey with Effects of Urbanization</u>. Stephen J. Stankowski (author). Trenton, New Jersey.

U.S. Department of the Interior, Geological Survey. (March 1974). Open-File Report, <u>Computer Program E-431</u>, <u>Users Manual</u>, <u>Computer Applications for Step-Backwater</u> <u>Analyses</u>. James O. Shearman (author). Washington, D.C.

U.S. Department of the Interior, Geological Survey. (Trenton, New Jersey, 1973). <u>1972</u> <u>Water Resources Data for New Jersey – Part 1, Surface Water Records</u>. Trenton, New Jersey.

U.S. Department of the Interior, Geological Survey. (1972). Special Report 37, <u>Floods</u> <u>of August and September 1971 in New Jersey</u>. Stephen J. Stankowski (author). Trenton, New Jersey.

U.S. Department of the Interior, Geological Survey. (1968). Water-Supply Paper 1672, <u>Magnitude and Frequency of Floods in the United States, Part 1-B, North Atlantic Slope</u> <u>Basins, New York to York River</u>. Richard H. Tice (author). Washington, D.C.

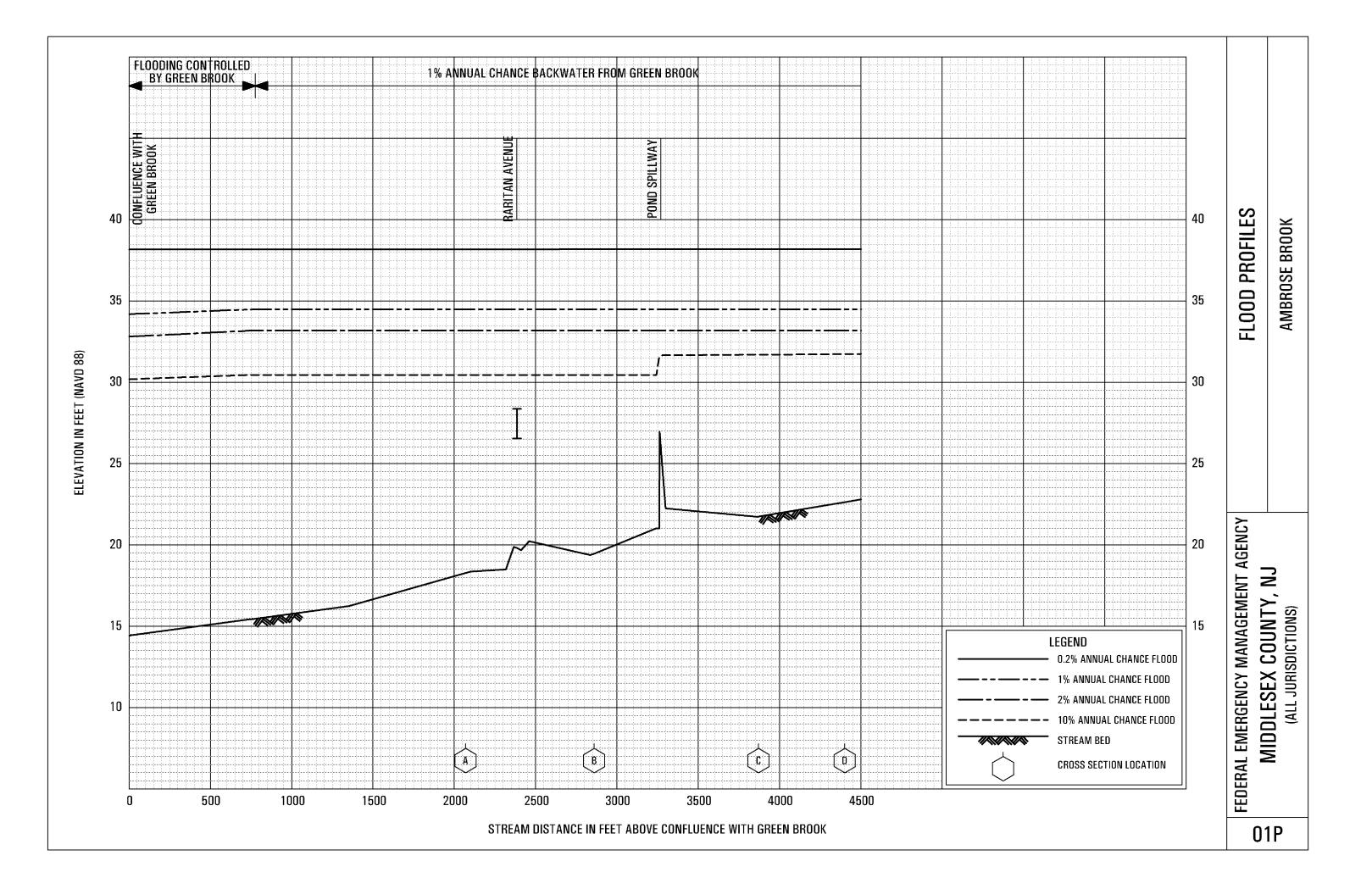
U.S. Department of the Interior, Geological Survey. (1967). Water-Supply Paper 1849, <u>Roughness Characteristics of Natural Channels</u>. Harry H. Barnes, Jr. (author). Washington, D.C.

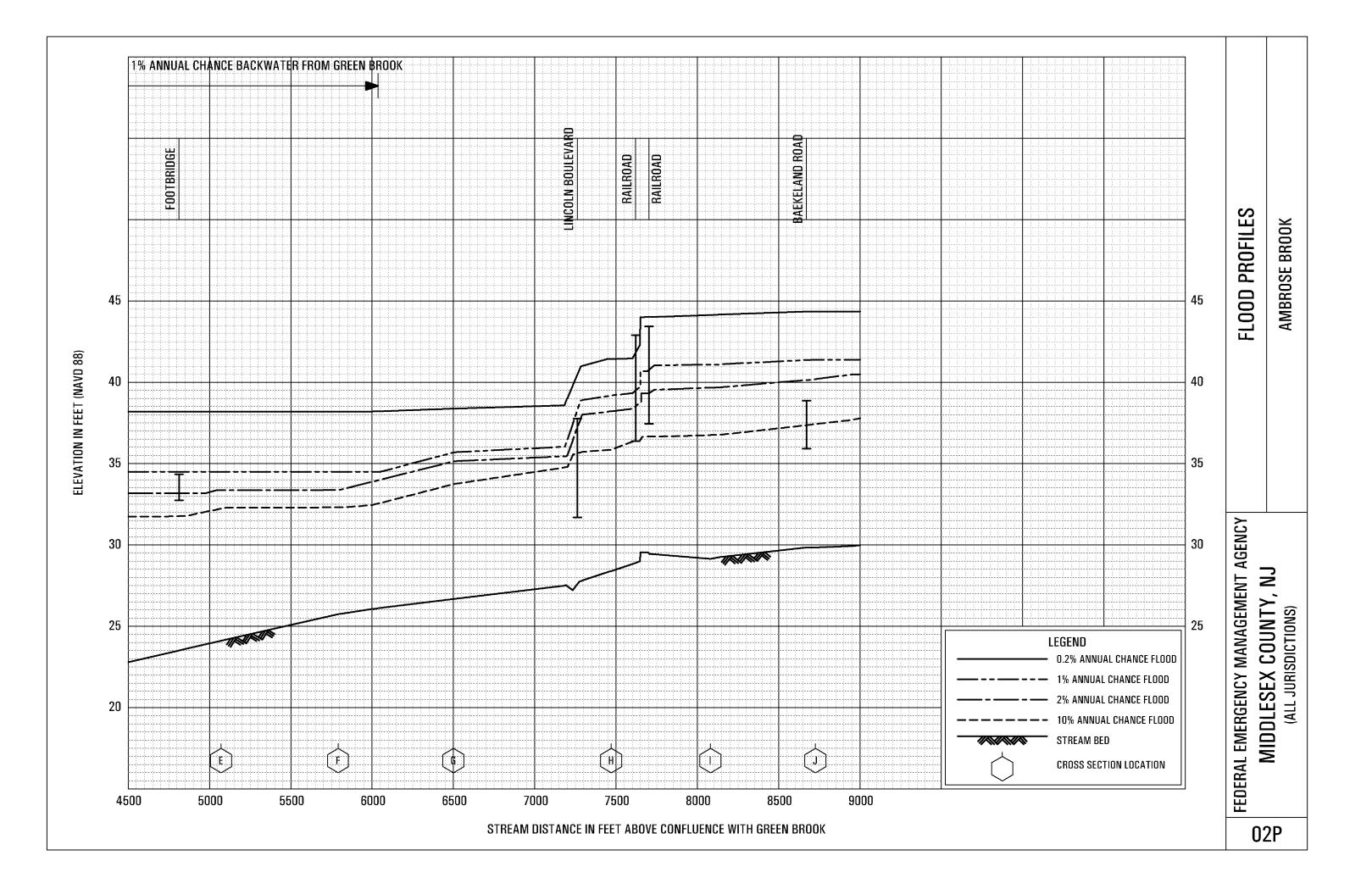
U.S. Department of the Interior, Geological Survey, in cooperation with the State of New Jersey, Department of Conservation and Economic Development, Division of Water Policy and Supply. (January 1966). <u>Extent and Frequency of Inundation of Flood Plain in Vicinity of Princeton, New Jersey</u>. J. A. Bettendorf (author). Trenton, New Jersey.

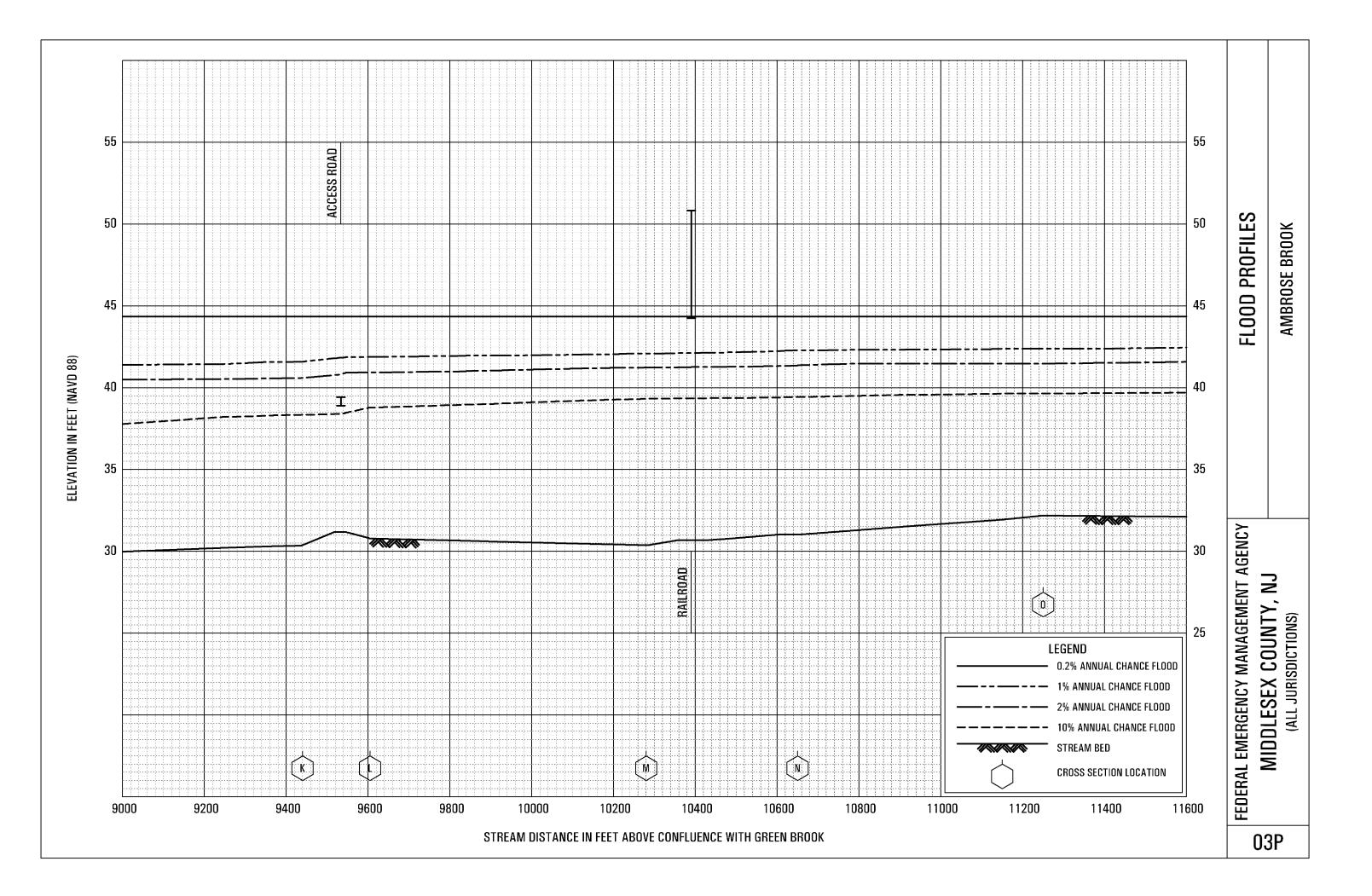
U.S. Department of the Interior, Geological Survey. (1964). Water Resources Circular 13, <u>Floods in New Jersey, Magnitude and Frequency</u>. Trenton, New Jersey.

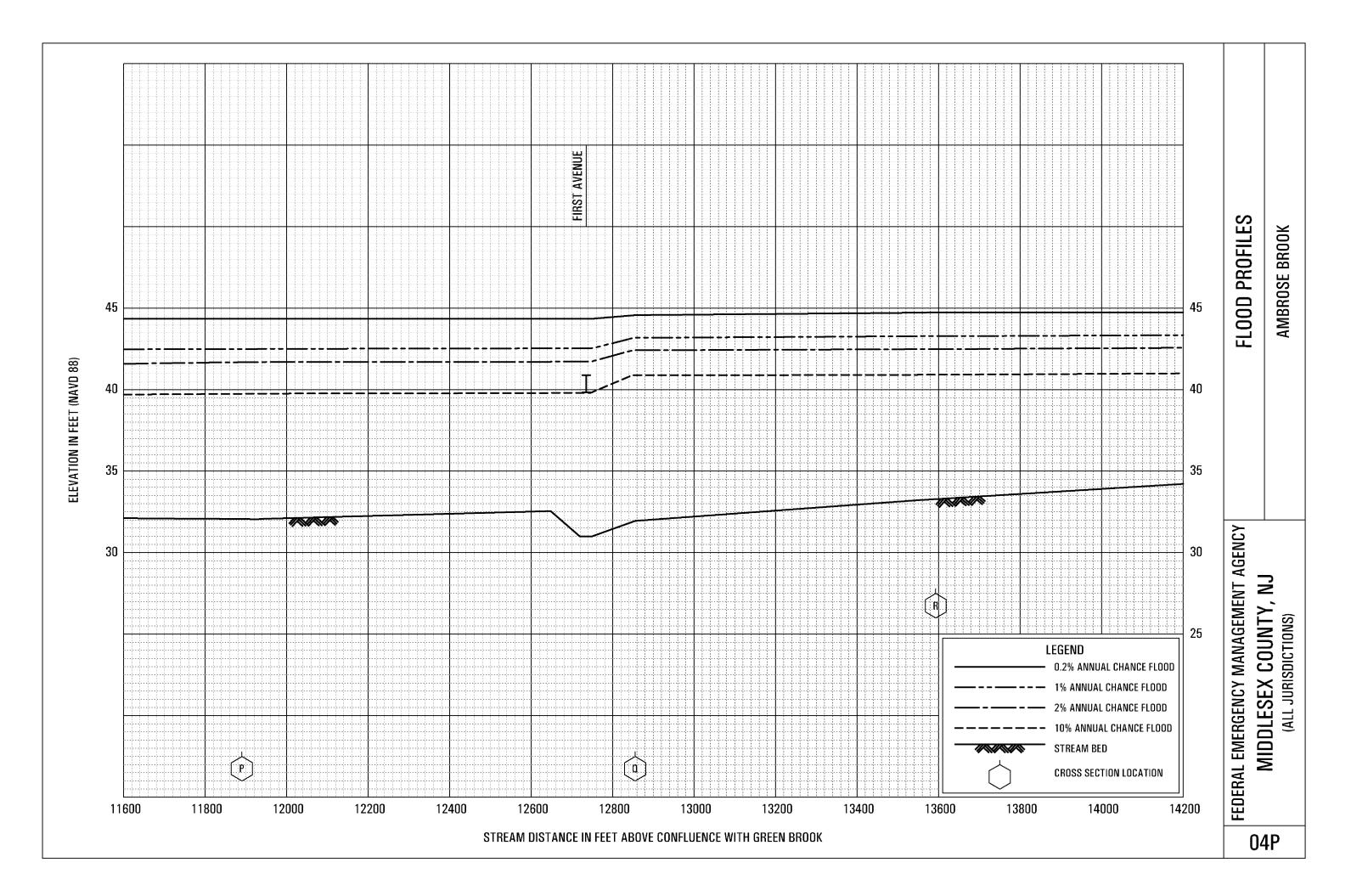
U.S. Department of the Interior, Geological Survey. (Hightstown, New Jersey, 1954, Photorevised 1970; Jamesburg, New Jersey, 1953, Photorevised 1970; Plainfield, New Jersey; Perth Amboy, New Jersey-New York, 1970; Plainfield, New Jersey, 1970; Marlboro, New Jersey, 1970; Freehold, New Jersey, 1970; Keyport, New Jersey, 1970; South Amboy, New Jersey, 1970; Princeton, New Jersey, 1954, Photorevised 1970). <u>7.5-Minute Series Topographic Maps</u>, Scale 1:24,000, Contour Interval 20 feet.

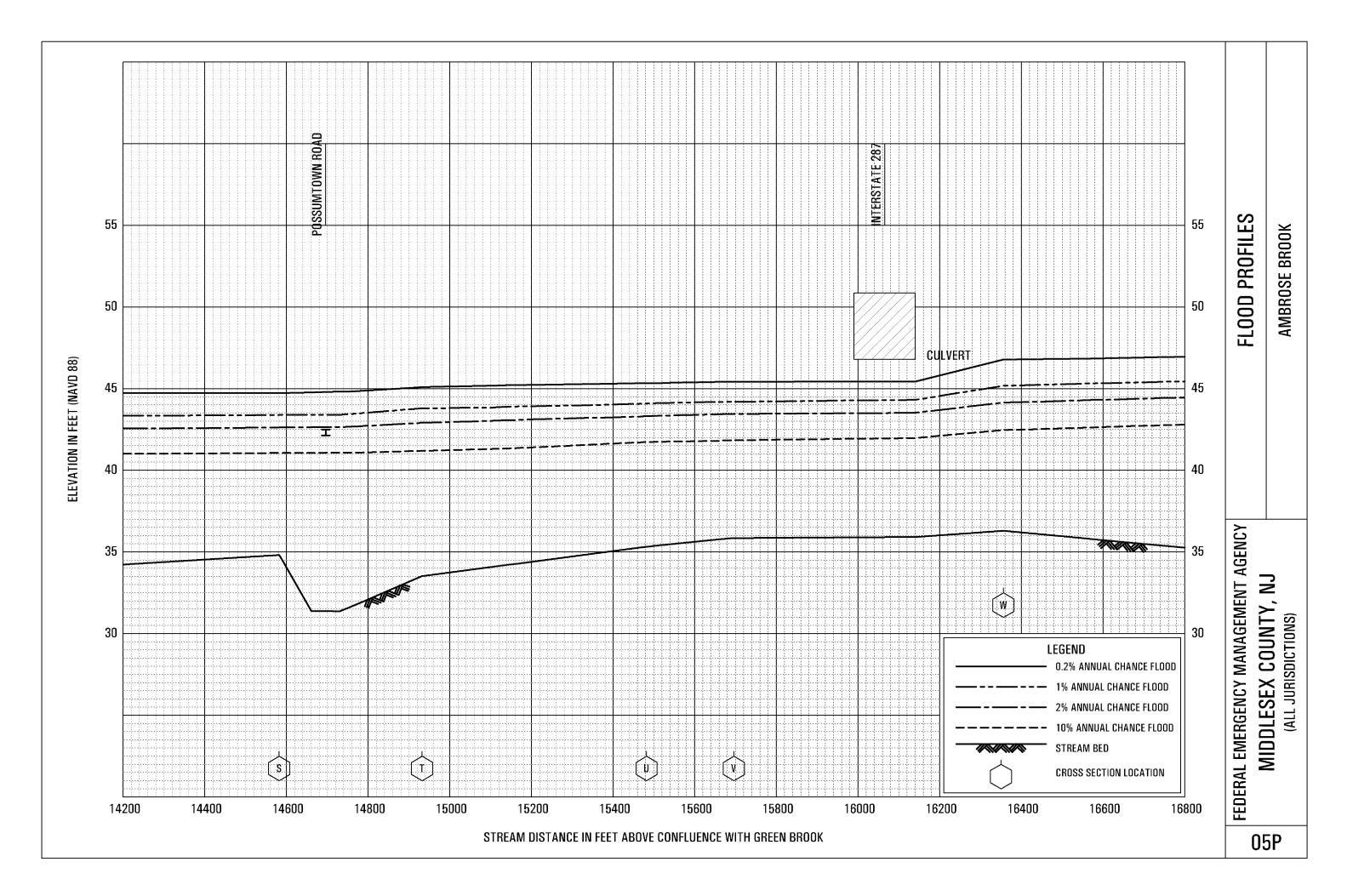
Ven Te Chow. (1959). Open-Channel Hydraulics. New York. McGraw-Hill.


Water Resources Council. (June 1977). "Guidelines for Determining Flood Flow Frequency," Bulletin 17A. Washington, D.C.


Water Resources Council. (March 1976). "Guidelines for Determining Flood Flow Frequency," Bulletin 17. Washington, D.C.


Water Resources Council. (December 1967). "A Uniform Technique for Determining Flood Flow Frequency," Bulletin 15. Washington, D.C.


Widmer, Kimble. (1964). <u>The Geology and Geography of New Jersey</u>. Trenton, New Jersey.


Works Progress Administration, Division of Women's and Professional Projects. (1937). Riparian and Stream Survey. Trenton, New Jersey.

